Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Optimization
The sequential quadratic hamiltonian (SQH) method is a novel numerical optimization procedure for solving optimal control problems governed by differential models. It is based on the characterisation of optimal controls in the framework of the Pontryagin maximum principle (PMP). The SQH method is a powerful computational methodology that is capable of development in many directions. The Sequential Quadratic Hamiltonian Method: Solving Optimal Control Problems discusses its analysis and use in solving nonsmooth ODE control problems, relaxed ODE control problems, stochastic control problems, mixed-integer control problems, PDE control problems, inverse PDE problems, differential Nash game problems, and problems related to residual neural networks. This book may serve as a textbook for undergraduate and graduate students, and as an introduction for researchers in sciences and engineering who intend to further develop the SQH method or wish to use it as a numerical tool for solving challenging optimal control problems and for investigating the Pontryagin maximum principle on new optimisation problems. Feature Provides insight into mathematical and computational issues concerning optimal control problems, while discussing many differential models of interest in different disciplines. Suitable for undergraduate and graduate students and as an introduction for researchers in sciences and engineering. Accompanied by codes which allow the reader to apply the SQH method to solve many different optimal control and optimisation problems
This book collects some recent works on the application of dynamic game and control theory to the analysis of environmental problems. This collec tion of papers is not the outcome of a conference or of a workshop. It is rather the result of a careful screening from among a number of contribu tions that we have solicited across the world. In particular, we have been able to attract the work of some of the most prominent scholars in the field of dynamic analyses of the environment. Engineers, mathematicians and economists provide their views and analytical tools to better interpret the interactions between economic and environmental phenomena, thus achiev ing, through this interdisciplinary effort, new and interesting results. The goal of the book is more normative than descriptive. All papers include careful modelling of the dynamics of the main variables involved in the game between nature and economic agents and among economic agents themselves, as well-described in Vrieze's introductory chapter. Fur thermore, all papers use this careful modelling framework to provide policy prescriptions to the public agencies authorized to regulate emission dy namics. Several diverse problems are addressed: from global issues, such as the greenhouse effect or deforestation, to international ones, such as the management of fisheries, to local ones, for example, the control of effluent discharges. Moreover, pollution problems are not the only concern of this book."
Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.
For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.
This book presents the latest researches on hypersonic steady glide dynamics and guidance, including the concept of steady glide reentry trajectory and the stability of its regular perturbation solutions, trajectory damping control technique for hypersonic glide reentry, singular perturbation guidance of hypersonic glide reentry, trajectory optimization based on steady glide, linear pseudospectral generalized nominal effort miss distance guidance, analytical entry guidance and trajectory-shaping guidance with final speed and load factor constraints. They can be used to solve many new difficult problems in entry guidance. And many practical engineering cases are provided for the readers for better understanding. Researchers and students in the fields of flight vehicle design or flight dynamics, guidance and control could use the book as valuable reference.
* What is the essence of the similarity between linearly
independent sets of columns of a matrix and forests in a graph?
This proceedings provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The volume consists of selected papers from the 5th ENRI International Workshop on ATM/CNS (EIWAC2017) held in Tokyo in November 2017, the theme of which was "Drafting Future Skies". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The proceedings is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
This book describes the next generation of industry-Industry 4.0-and how it holds the promise of increased flexibility in manufacturing, along with automation, better quality, and improved productivity. The authors discuss how it thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. The authors posit that intelligent cloud services and resource sharing play an important role in Industry 4.0 anticipated Fourth Industrial Revolution. This book serves the different issues and challenges in cloud resource management CRM techniques with proper propped solution for IT organizations. The book features chapters based on the characteristics of autonomic computing with its applicability in CRM. Each chapter features the techniques and analysis of each mechanism to make better resource management in cloud.
There has been a great deal of excitement over the last few years concerning the emergence of new mathematical techniques for the analysis and control of nonlinear systems: witness the emergence of a set of simplified tools for the analysis of bifurcations, chaos and other simplified tools for the analysis of bifurcations, chaos and other complicated dynamical behaviour and the development of a comprehensive theory of nonlinear control. Coupled with this set of analytic advances has been the vast increase in computational power available both for the simulation of nonlinear systems as well as for the implementation in real time of sophisticated, real-time nonlinear control laws. Thus, technological advances have bolstered the impact of analytic advances and produced a tremendous variety of new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications. The material presented in this book is culled from different 1st year graduate courses that the author has taught at MIT and at Berkeley.
During the past 20 years, behavioral and social scientists following advances in physics and mathematics have shown an increasing interest in complex, adaptive, self-organizing, dynamic systems. The appeal of this perspective is fueled by the fact that there are a handful of properties that are common to all dynamic systems that can be used to explain the spontaneous emergence of novel forms, the mechanisms of continuity and change, and the dynamics of a large number of interacting factors. From animal population dynamics to human neural processes, there is growing evidence that human individual and social interactions may be understood as a dynamic system. In the field of psychology, there was a flurry of books during the early 1990s that explored the dynamic human system. These titles, and those that have been published since, fall into two general categories: those that integrate dynamic systems ideas into psychological theories and those that provide methods of modeling dynamic human systems (see list of competitive titles below). Despite the enrichment that dynamic systems principles have afforded psychological theories, the methods provided to test these theoretical assumptions have not been readily adopted. The reason is that, unlike the physical scientists, social scientists are not as familiar with the mathematical formulations (i.e., differential and difference equations) required for these methods, nor are their data particularly amenable to such manipulations or models. Furthermore, the psychological relevance of some of the parameters extracted from these methods (i.e., Lyupanov exponents, chaotic attractors) is very difficult to interpret. What is needed is a methodological middle road to bridge theory and analysis. The proposed book on the state space grid method is perfectly poised to provide that bridge. State space grids were first developed by Marc Lewis and
colleagues (Lewis, Lamey, and Douglas, 1999) to depict sequences of
infant attention and distress. This technique has since been
applied to the study of parent-child interactions (Granic &
Lamey, 2002; Granic, Hollenstein, Dishion, & Patterson, 2003;
Hollenstein, Granic, Stoolmiller, & Snyder, 2005; Hollenstein
& Lewis, under review; Lewis, Zimmerman, Hollenstein, &
Lamey, 2004), and peer interactions (Dishion, Nelson, Bullock,
& Winter, 2005; Martin, Fabes, Hanish, & Hollenstein,
2005). At this time, there are projects in progress that extend
this work into the study of marital interactions, young adult group
drinking patterns, eye gaze and eye contact in response to
questioning, diary studies, and peer pressure dynamics.
This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson-Solow-Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2-6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.
This book analyzes coalitional control schemes by incorporating concepts of cooperative game theory into a distributed control framework. It considers a networked architecture where the nodes are the agents and the edges are their communication links and either the agents or the links are established as the players of cooperative games related to the cost function of the coalitional schemes. The book discusses various cooperative game theory tools that are used to measure/analyze the players' features, impose constraints on them, provide alternative methods of game computation, detect critical players inside the control scheme, and perform system partitioning of large-scale systems, such as the Barcelona drinking water network, which is described in a case study.
This handbook aims to serve as a one-stop, reliable source of reference, with curations of survey and expository contributions on the state-of-the-art in Blockchain technology. It covers a comprehensive range of topics, providing the technical and non-technical reader with fundamentals, applications, and deep details on a variety of topics. The readership is expected to span broadly from technologically-minded business professionals and entrepreneurs, to students, instructors, novices and seasoned researchers, in computer science, engineering, software engineering, finance, and data science. Though Blockchain technology is relatively young, its evolution as a field and a practice is booming in growth and its importance to society had never been more important than it is today. Blockchain solutions enable a decentralization of a digital society where people can contribute, collaborate, and transact without having to second-guess the trust and transparency factors with many geographical, financial, and political barriers removed. It is the distributed ledger technology behind the success of Bitcoin, Ethereum, and many emerging applications. The resource is divided into 5 parts. Part 1 (Foundation) walks the reader through a comprehensive set of essential concepts, protocols, and algorithms that lay the foundation for Blockchain. Part 2 (Scalability) focuses on the most pressing challenges of today's blockchain networks in how to keep pace with real-world expectations. Part 3 (Trust and Security) provides detailed coverage on the issues of trust, reputation, and security in Blockchain. Part 4 (Decentralized Finance) is devoted to a high-impact application of Blockchain to finance, the sector that has most benefitted from this technology. Part 5 (Application and Policy) includes several cases where Blockchain applies to the real world.
This book is focused on the discussion of the traffic assignment problem, the mathematical and practical meaning of variables, functions and basic principles. This work gives information about new approaches, methods and algorithms based on original methodological technique, developed by authors in their publications for the past several years, as well as corresponding prospective implementations. The book may be of interest to a wide range of readers, such as civil engineering students, traffic engineers, developers of traffic assignment algorithms etc. The obtained results here are to be used in both practice and theory. This book is devoted to the traffic assignment problem, formulated in a form of nonlinear optimization program. The most efficient solution algorithms related to the problem are based on its structural features and practical meaning rather than on standard nonlinear optimization techniques or approaches. The authors have carefully considered the meaning of the traffic assignment problem for efficient algorithms development.
This book is one of the first to include an extensive discussion of integrated public transport planning. In times of growing urban populations and increasing environmental awareness, the importance of optimizing public transport systems is ever-developing. Three different aspects are presented: line planning, timetabling, and vehicle scheduling. Classically, challenges concerning these three aspects of planning are solved sequentially. Due to their high interdependence, the author presents a clear and detailed analysis of innovative, integrated models with accompanied numerical experiments performed to assess, and often support, the benefits of integration. The book will appeal to a wide readership ranging from graduate students to researchers.
This proceedings volume contains a selection of papers presented at the Fourth International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 2-6, 2009. The conference was organized by the Hanoi Institute of Mathematics, the Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, mechanics, biology and medicine, engineering, hydrology problems, transport, communication networks, production scheduling, industrial and commercial problems.
Game Theoretical Applications to Economics and Operations Research deals with various aspects of game theory and their applications to Economics and OR related problems. It brings together the contributions of a wide spectrum of disciplines such as Statistics, Mathematics, Mathematical Economics and OR. The contributions include decision theory, stochastic games, cooperative and noncooperative games. The papers in the volume are classified under five different sections. The first four sections are devoted to the theory of two-person games, linear complimentarity problems and game theory, cooperative and noncooperative games. The fifth section contains diverse applications of these various theories. Taken together they exhibit a rich versatility of these theories and lively interaction between the mathematical theory of games and significant economic problems.
Durable strategies that have prolonged effects are prevalent in real-world situations. Revenue-generating investments, toxic waste disposal, long-lived goods, regulatory measures, coalition agreements, diffusion of knowledge, advertisement and investments to accumulate physical capital are concrete and common examples of durable strategies. This book provides an augmentation of dynamic game theory and advances a new game paradigm with durable strategies in decision-making schemes. It covers theories, solution techniques, and the applications of a general class of dynamic games with multiple durable strategies. Non-cooperative equilibria and cooperative solutions are derived, along with advanced topics including random termination, asynchronous game horizons, and stochastic analysis. The techniques presented here will enable readers to solve numerous practical dynamic interactive problems with durable strategies. This book not only expands the scope of applied dynamic game theory, but also provides a solid foundation for further theoretical and technical advancements. As such, it will appeal to scholars and students of quantitative economics, game theory, operations research, and computational mathematics. "Not too many new concepts have been introduced in dynamic games since their inception. The introduction of the concept of durable strategies changes this trend and yields important contributions to environmental and business applications." Dusan M Stipanovic, Professor, University of Illinois at Urbana-Champaign "Before this book, the field simply did not realize that most of our strategies are durable and entail profound effects in the future. Putting them into the mathematical framework of dynamic games is a great innovative effort." Vladimir Turetsky, Professor, Ort Braude College "Durable-strategies Dynamic Games is truly a world-leading addition to the field of dynamic games. It is a much needed publication to tackle increasingly crucial problems under the reality of durable strategies." Vladimir Mazalov, Director of Mathematical Research, Russian Academy of Sciences & President of the International Society of Dynamic Games
The uneven geographical distribution of economic activities is a huge challenge worldwide and also for the European Union. In Krugman's New Economic Geography economic systems have a simple spatial structure. This book shows that more sophisticated models should visualise the EU as an evolving trade network with a specific topology and different aggregation levels. At the highest level, economic geography models give a bird eye's view of spatial dynamics. At a medium level, institutions shape the economy and the structure of (financial and labour) markets. At the lowest level, individual decisions interact with the economic, social and institutional environment; the focus is on firms' decision on location and innovation. Such multilevel models exhibit complex dynamic patterns - path dependence, cumulative causation, hysteresis - on a network structure; and specific analytic tools are necessary for studying strategic interaction, heterogeneity and nonlinearities.
This book provides a comprehensive overview of the most important and frequently considered optimization problems concerning cutting and packing. Based on appropriate modeling approaches for the problems considered, it offers an introduction to the related solution methods. It also addresses aspects like performance results for heuristic algorithms and bounds of the optimal value, as well as the packability of a given set of objects within a predefined container. The problems discussed arise in a wide variety of different fields of application and research, and as such, the fundamental knowledge presented in this book make it a valuable resource for students, practitioners, and researchers who are interested in dealing with such tasks.
The roles and applications of various modeling approaches, aimed at improving the usefulness of energy policy models in public decision making, are covered by this book. The development, validation, and applications of system dynamics and agent-based models in service of energy policy design and assessment in the 21st century is a key focus. A number of modeling approaches and models for energy policy, with a particular focus on low-carbon economic development of regions and states are covered. Chapters on system dynamics methodology, model-based theory, fuzzy system dynamics frame-work, and optimization modeling approach are presented, along with several chapters on future research opportunities for the energy policy modeling community. The use of model-based analysis and scenarios in energy policy design and assessment has seen phenomenal growth during the past several decades. In recent years, renewed concerns about climate change and energy security have posed unique modeling challenges. By utilizing the validation techniques and procedures which are effectively demonstrated in these contributions, researchers and practitioners in energy systems domain can increase the appeal and acceptance of their policy models.
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Providing readers with a detailed examination of resilient controls in risk-averse decision, this monograph is aimed toward researchers and graduate students in applied mathematics and electrical engineering with a systems-theoretic concentration. This work contains a timely and responsive evaluation of reforms on the use of asymmetry or skewness pertaining to the restrictive family of quadratic costs that have been appeared in various scholarly forums. Additionally, the book includes a discussion of the current and ongoing efforts in the usage of risk, dynamic game decision optimization and disturbance mitigation techniques with output feedback measurements tailored toward the worst-case scenarios. This work encompasses some of the current changes across uncertainty quantification, stochastic control communities, and the creative efforts that are being made to increase the understanding of resilient controls. Specific considerations are made in this book for the application of decision theory to resilient controls of the linear-quadratic class of stochastic dynamical systems. Each of these topics are examined explicitly in several chapters. This monograph also puts forward initiatives to reform both control decisions with risk consequences and correct-by-design paradigms for performance reliability associated with the class of stochastic linear dynamical systems with integral quadratic costs and subject to network delays, control and communication constraints.
|
You may like...
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R6,432
Discovery Miles 64 320
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,756
Discovery Miles 57 560
Transnational Cooperation - An…
Clint Peinhardt, Todd Sandler
Hardcover
R3,624
Discovery Miles 36 240
The History and Allure of Interactive…
Mark Kretzschmar, Sara Raffel
Hardcover
R3,044
Discovery Miles 30 440
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,293
Discovery Miles 22 930
|