![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
The detailed survey on constraint handling techniques specifically penalty function approach is presented in the book; presents the Cohort Intelligence (CI) algorithm incorporated with a novel self-adaptive penalty function (SAPF) approach which helped in avoiding preliminary trials of selecting penalty parameter. The approach is referred to as CI-SAPF; CI-SAPF is further hybridized with Colliding Bodies Optimization (CBO) algorithm to promote a parameter less metaheuristic algorithm; presents solutions to several problems from discrete truss structure domain, mixed variable design engineering domain, and linear & nonlinear domain validating the CI-SAPF and CI-SAPF-CBO; behavior of SAPF approach on pseudo objective function, constraint violations, penalty function and penalty parameter have been analyzed and discussed in very detail; presents the in-depth analysis and comparison of the CI-SAPF, CI-SAPF-CBO and CBO algorithms with other contemporary techniques; provides the solution to real-world manufacturing problems of optimizing multi pass milling and turning processes using CI-SPF, CI-SAPF and CI-SAPF-CBO approaches.
This book describes the modelling and optimisation of vibration reduction systems in an integrated fashion using nonlinear equations of motion. It proposes an effective optimisation method for determining the basic characteristics of the non-linear visco-elastic elements used in passive vibration reduction systems. In the case of semi-active and active vibration isolators, a design process of the advanced control systems is proposed that makes possible to optimise the controller settings relatively to the selected vibro-isolation criteria. The approach developed here is subsequently tested by means of experimental investigations conducted on various sample vibration reduction systems: passive, semi-active and active. The book presents a biomechanical modelling approach that allows users to select the properties of vibro-isolation systems for different types of oscillation and different optimisation criteria - and can significantly reduce the harmful vibrations that can affect the human body in the process. Further, the book equips readers to evaluate the viscoelastic characteristics of passive systems and design control systems for semi-active and active systems. Modelling and Control Design of Vibration Reduction Systems offers a valuable guide for researchers and practitioners alike. It also provides students and academics with systematic information on the procedures to be followed in the design process for semi-active or active vibration reduction systems.
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H8 game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
The starting point for this monograph is the previously unknown connection between the Continuum Hypothesis and the saturation of the non-stationary ideal on 1; and the principle result of this monograph is the identification of a canonical model in which the Continuum Hypothesis is false. This is the first example of such a model and moreover the model can be characterized in terms of maximality principles concerning the universal-existential theory of all sets of countable ordinals. This model is arguably the long sought goal of the study of forcing axioms and iterated forcing but is obtained by completely different methods, for example no theory of iterated forcing whatsoever is required. The construction of the model reveals a powerful technique for obtaining independence results regarding the combinatorics of the continuum, yielding a number of results which have yet to be obtained by any other method. This monograph is directed to researchers and advanced graduate students in Set Theory. The second edition is updated to take into account some of the developments in the decade since the first edition appeared, this includes a revised discussion of -logic and related matters.
This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a "hands-on" treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.
This important three volume set is a collection of key writings on game theory published before 1963. It makes many frequently-cited and historically important articles conveniently available to a wider audience. The collection includes comprehensive coverage of the game theoretical writings of von Neumann, Nash and Wald. The editors have written a succinct introduction to accompany the articles.
In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research; Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data; Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.
Optimization of Pharmaceutical Processes presents contributions from leading authorities in the fields of optimization and pharmaceutical manufacturing. Formulated within structured frameworks, practical examples and applications are given as guidance to apply optimization techniques to most aspects of pharmaceutical processes from design, to lab and pilot scale, and finally to manufacturing. The increasing demand for better quality, higher yield, more efficient-optimized and green pharmaceutical processes, indicates that optimal conditions for production must be applied to achieve simplicity, lower costs and superior yield. The application of such methods in the pharmaceutical industry is not trivial. Quality of the final product is of major importance to human health and the need for deep knowledge of the process parameters and the optimization of the processes are imperative. The volume, which includes new methods as well as review contributions will benefit a wide readership including engineers in pharmaceuticals, chemical, biological, to name just a few.
The book provides a collection of recent applications of nature inspired optimization in industrial fields. Different optimization techniques have been deployed, and different problems have been effectively analyzed. The valuable contributions from researchers focus on three ultimate goals (i) improving the accuracy of these techniques, (ii) achieving higher speed and lower computational complexity, and (iii) working on their proposed applications. The book is helpful for active researchers and practitioners in the field.
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
the handbook is a valuable reference to researchers from industry and academia, as well as Masters and PhD students around the globe working in the metaheuristics and applications domain includes contributions from a variety of academics/researchers in the field of metaheuristics
Written by experts from all over the world, the book comprises the latest applications of mathematical and models in food engineering and fermentation. It provides the fundamentals on statistical methods to solve standard problems associated with food engineering and fermentation technology. Combining theory with a practical, hands-on approach, this book covers key aspects of food engineering. Presenting cuttingedge information, the book is an essential reference on the fundamental concepts associated with food engineering.
Public-Private Partnerships (PPP or 3Ps) allow the public sector to seek alternative funding and expertise from the private sector during procurement processes. Such partnerships, if executed with due diligence, often benefit the public immensely. Unfortunately, Public-Private Partnerships can be vulnerable to corruption. This book looks at what measures we can put in place to check corruption during procurement and what good governance strategies the public sector can adopt to improve the performance of 3Ps. The book applies mathematical models to analyze 3Ps. It uses game theory to study the interaction and dynamics between the stakeholders and suggests strategies to reduce corruption risks in various 3Ps stages. The authors explain through game theory-based simulation how governments can adopt a evaluating process at the start of each procurement to weed out undesirable private partners and why the government should take a more proactive approach. Using a methodological framework rooted in mathematical models to illustrate how we can combat institutional corruption, this book is a helpful reference for anyone interested in public policymaking and public infrastructure management.
This book presents fundamental concepts of optimization problems and its real-world applications in various fields. The core concepts of optimization, formulations and solution procedures of various real-world problems are provided in an easy-to-read manner. The unique feature of this book is that it presents unified knowledge of the modelling of real-world decision-making problems and provides the solution procedure using the appropriate optimization techniques. The book will help students, researchers, and faculty members to understand the need for optimization techniques for obtaining optimal solution for the decision-making problems. It provides a sound knowledge of modelling of real-world problems using optimization techniques. It is a valuable compendium of several optimization techniques for solving real-world application problems using optimization software LINGO. The book is useful for academicians, practitioners, students and researchers in the field of OR. It is written in simple language with a detailed explanation of the core concepts of optimization techniques. Readers of this book will understand the formulation of real-world problems and their solution procedures obtained using the appropriate optimization techniques.
Written by leading scholars from various disciplines, this book presents current research on topics such as public choice, game theory, and political economy. It features contributions on fundamental, methodological, and empirical issues around the concepts of power and responsibility that strive to bridge the gap between different disciplinary approaches. The contributions fall into roughly four sub-disciplines: voting and voting power, public economics and politics, economics and philosophy, as well as labor economics. On the occasion of his 75th birthday, this book is written in honor of Manfred J. Holler, an economist by training and profession whose work as a guiding light has helped advance our understanding of the interdisciplinary connections of concepts of power and responsibility. He has written many articles and books on game theory, and worked extensively on questions of labor economics, politics, and philosophy.
This book gathers peer-reviewed contributions submitted to the 21st European Conference on Mathematics for Industry, ECMI 2021, which was virtually held online, hosted by the University of Wuppertal, Germany, from April 13th to April 15th, 2021. The works explore mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Topics covered include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
- Includes industrial case studies - Includes chapters on cyber physical systems, machine learning, deep learning, cyber security, robotics, smart manufacturing and predictive analytics - surveys current trends and challenges in metaheuristics and industry 4.0
Linear and Nonlinear Programming is considered a classic textbook in Optimization. While it is a classic, it also reflects modern theoretical insights. These insights provide structure to what might otherwise be simply a collection of techniques and results, and this is valuable both as a means for learning existing material and for developing new results. One major insight of this type is the connection between the purely analytical character of an optimization problem, expressed perhaps by properties of the necessary conditions, and the behavior of algorithms used to solve a problem. This was a major theme of the first and second editions. Now the third edition has been completely updated with recent Optimization Methods. The new co-author, Yinyu Ye, has written chapters and chapter material on a number of these areas including Interior Point Methods.
Handbook of the Shapley Value contains 24 chapters and a foreword written by Alvin E. Roth, who was awarded the Nobel Memorial Prize in Economic Sciences jointly with Lloyd Shapley in 2012. The purpose of the book is to highlight a range of relevant insights into the Shapley value. Every chapter has been written to honor Lloyd Shapley, who introduced this fascinating value in 1953. The first chapter, by William Thomson, places the Shapley value in the broader context of the theory of cooperative games, and briefly introduces each of the individual contributions to the volume. This is followed by a further contribution from the editors of the volume, which serves to introduce the more significant features of the Shapley value. The rest of the chapters in the book deal with different theoretical or applied aspects inspired by this interesting value and have been contributed specifically for this volume by leading experts in the area of Game Theory. Chapters 3 through to 10 are more focused on theoretical aspects of the Shapley value, Chapters 11 to 15 are related to both theoretical and applied areas. Finally, from Chapter 16 to Chapter 24, more attention is paid to applications of the Shapley value to different problems encountered across a diverse range of fields. As expressed by William Thomson in the Introduction to the book, "The chapters contribute to the subject in several dimensions: Mathematical foundations; axiomatic foundations; computations; applications to special classes of games; power indices; applications to enriched classes of games; applications to concretely specified allocation problems: an ever-widening range, mapping allocation problems into games or implementation." Nowadays, the Shapley value continues to be as appealing as when it was first introduced in 1953, or perhaps even more so now that its potential is supported by the quantity and quality of the available results. This volume collects a large amount of work that definitively demonstrates that the Shapley value provides answers and solutions to a wide variety of problems.
This book will cover heuristic optimization techniques and applications in engineering problems. The book will be divided into three sections that will provide coverage of the techniques, which can be employed by engineers, researchers, and manufacturing industries, to improve their productivity with the sole motive of socio-economic development. This will be the first book in the category of heuristic techniques with relevance to engineering problems and achieving optimal solutions. Features Explains the concept of optimization and the relevance of using heuristic techniques for optimal solutions in engineering problems Illustrates the various heuristics techniques Describes evolutionary heuristic techniques like genetic algorithm and particle swarm optimization Contains natural based techniques like ant colony optimization, bee algorithm, firefly optimization, and cuckoo search Offers sample problems and their optimization, using various heuristic techniques
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market - nearly every major perspective in the field is represented. The Companion's 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.
The quadratic binary optimization problem (QUBO) is a versatile combinatorial optimization model with a variety of applications and rich theoretical properties. Application areas of the model include finance, cluster analysis, traffic management, machine scheduling, VLSI physical design, physics, quantum computing, engineering, and medicine. In addition, various mathematical optimization models can be reformulated as a QUBO, including the resource constrained assignment problem, set partitioning problem, maximum cut problem, quadratic assignment problem, the bipartite unconstrained binary optimization problem, among others. This book presents a systematic development of theory, algorithms, and applications of QUBO. It offers a comprehensive treatment of QUBO from various viewpoints, including a historical introduction along with an in-depth discussion of applications modelling, complexity and polynomially solvable special cases, exact and heuristic algorithms, analysis of approximation algorithms, metaheuristics, polyhedral structure, probabilistic analysis, persistencies, and related topics. Available software for solving QUBO is also introduced, including public domain, commercial, as well as quantum computing based codes.
This book presents the essential concepts of operations research and engineering management in a structured manner. Starting with the basic functions of management - planning, organizing, leading and controlling - it introduces the reader to the process of strategic decision-making, covering the essentials of technological invention management, innovation and entrepreneurship, with ample examples of decision-making under certainty, uncertainty and risk conditions. It also exposes the reader to the fundamentals of managing projects and professional communication. In order to reinforce the theory used, practical case studies taken from relevant disciplines are introduced. For instance, case studies from the retail sector have been appended to the assignment problem and cases related to traffic have been introduced for queuing formulation. The concept of game theory is discussed in greater detail with an introduction to topics such as incentive compatibility, Bayesian representations for different games, budget balance, auctions and a broad coverage of mechanism design. While a few of these problems have been solved in the book, a few others have been left un-solved to promote readers' understanding. The mix of theoretical and practical examples reveals to the reader the underlying complexities and highlights the challenges entailed by field implementation. |
![]() ![]() You may like...
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,917
Discovery Miles 39 170
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,905
Discovery Miles 89 050
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,780
Discovery Miles 57 800
|