![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 4, the authors present a Diamond of a find, covering one-player games such as Solitaire.
Herbert Scarf is a highly esteemed distinguished American economist. He is internationally famous for his early epoch-making work on optimal inventory policies and his highly influential study with Andrew Clark on optimal policies for a multi-echelon inventory problem, which initiated the important and flourishing field of supply chain management. Equally, he has gained world recognition for his classic study on the stability of the Walrasian price adjustment processes and his fundamental analysis on the relationship between the core and the set of competitive equilibria (the so-called Edgeworth conjecture). Further achievements include his remarkable sufficient condition for the existence of a core in non-transferable utility games and general exchange economies, his seminal paper with Lloyd Shapley on housing markets, and his pioneering study on increasing returns and models of production in the presence of indivisibilities. All in all, however, the name of Scarf is always remembered as a synonym for the computation of economic equilibria and fixed points. In the early 1960s he invented a path-breaking technique for computing equilibrium prices. This work has generated a major research field in economics termed Applied General Equilibrium Analysis and a corresponding area in operations research known as Simplicial Fixed Point Methods. This book comprises all his research articles and consists of four volumes. This volume collects Herbert Scarf's papers in the area of Economics and Game Theory.
Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis.
In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to "build" one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hoelderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
This book presents an introduction to variational analysis, a field which unifies theories and techniques developed in calculus of variations, optimization, and control, and covers convex analysis, nonsmooth analysis, and set-valued analysis. It focuses on problems with constraints, the analysis of which involves set-valued mappings and functions that are not differentiable. Applications of variational analysis are interdisciplinary, ranging from financial planning to steering a flying object. The book is addressed to graduate students, researchers, and practitioners in mathematical sciences, engineering, economics, and finance. A typical reader of the book should be familiar with multivariable calculus and linear algebra. Some basic knowledge in optimization, control, and elementary functional analysis is desirable, but all necessary background material is included in the book.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
The Greek economic crisis has imperilled the stability of the eurozone, generating much global anxiety. Policymakers, analysts, and the media have daily debated the course of the Greek economy, prescribing ways to move forward. This collection of essays progressively moves from an analysis of the causes of the crisis and the policy responses so far to a debate on some of the country s advantages and capabilities that should underpin its new development model and propel the return to growth. The book analytically chooses to view the glass as half-full and seeks to provide motivation and inspiration for change by indicating some of the economic sectors where Greece maintains a comparative advantage. Therefore, it challenges the emerging picture of Greece as a country doomed to failure, where everything falls apart.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
The first volume, Geometry, Language and Strategy, extended the concepts of Game Theory, replacing static equilibrium with a deterministic dynamic theory. The first volume opened up many applications that were only briefly touched on. To study the consequences of the deterministic approach in contrast to standard Bayesian approaches, the richness of applications, requires an engineering foundation and discipline, which this volume supplies. It provides a richer list of applications, such as the Prisoner's Dilemma, which extends the resonant behavior of Vol. 1 to more general time-dependent and transient behaviors.
This book highlights recent developments in multidimensional data visualization, presenting both new methods and modifications on classic techniques. Throughout the book, various applications of multidimensional data visualization are presented including its uses in social sciences (economy, education, politics, psychology), environmetrics, and medicine (ophthalmology, sport medicine, pharmacology, sleep medicine). The book provides recent research results in optimization-based visualization. Evolutionary algorithms and a two-level optimization method, based on combinatorial optimization and quadratic programming, are analyzed in detail. The performance of these algorithms and the development of parallel versions is discussed. The encorporation of new visualization techniques to improve the capabilies of artificial neural networks (self-organizing maps, feed-forward networks) is also discussed. The book includes over 100 detailed images presenting examples of the different visualization techniques that are presented. This book is intended for scientists and researchers in any field of study where complex and multidimensional data must be represented visually.
This book describes the interplay of mechanics, electronics, electrotechnics, automation and biomechanics. It provides a broad overview of mechatronics systems ranging from modeling and dimensional analysis, and an overview of magnetic, electromagnetic and piezo-electric phenomena. It also includes the investigation of the pneumo-fluid-mechanical, as well as electrohydraulic servo systems, modeling of dynamics of an atom/particle embedded in the magnetic field, integrity aspects of the Maxwell's equations, the selected optimization problems of angular velocity control of a DC motor subjected to chaotic disturbances with and without stick-slip dynamics, and the analysis of a human chest adjacent to the elastic backrest aimed at controlling force to minimize relative compression of the chest employing the LQR.This book provides a theoretical background on the analysis of various kinds of mechatronics systems, along with their computational analysis, control, optimization as well as laboratory investigations.
Gaming the Market: Applying Game Theory to Create Winning Trading Strategies is the first book to show investors how game theory is applicable to decisions about buying and selling stocks, bonds, mutual funds, futures, and options. As a practical trading guide, Gaming the Market will help investors master this revolutionary approach, and employ it to their advantage. Although game theory has been studied since the 1940s, it has only recently been applied to the world of finance. Game theory champions garnered the 1994 Nobel Prize in Economics, and, today, this theory is used to analyze everything from the baseball strike to FCC auctions. Increasingly, game theory is making its mark as a potent tool for traders. In Gaming the Market, economist Ronald B. Shelton provides a model that enables traders to predict profitability and, as a result, make effective buy and sell decisions. Stated simply, game theory is the study of conflict based on a formal approach to decision making that views decisions as choices made in a game. Whether playing individually or in a group, each player in a conflict has more than one course of action available to him, and the outcome of the "game" depends on the interaction of the strategies pursued by each. Shelton offers real-world examples that reveal how the principles of game theory drive financial markets --and how these same principles can be used to develop winning investment strategies. Through Shelton's organized and precise explanations--he uses familiar games such as chess and checkers to illustrate his points --readers gain a solid understanding of the key principles of game theory before applying them to actual financial market situations. Gaming the Market examines the interaction between price fluctuations and risk acceptance levels and gradually constructs a game theory model which proves that there are probability-based formulas for determining the profitability of any given trade. With appendixes on T-Bond futures, mathematical representations of the model, and QuickBasic code for calculating relative frequencies, Gaming the Market provides a thorough overview of the rules and strategies of game theory. This indispensable reference will prove invaluable to novice and seasoned players alike. Are the markets a game? What are the rules? Who are the players? How can you, as a player, come up with a winning strategy? Now, acclaimed economist Ronald B. Shelton shows you how to master the power of game theory in the first trader's guide to this revolutionary approach to investment decisions! "It's not often that a refreshingly new idea appears in the field of trading strategies or risk management, but Ronald B. Shelton has taken pieces from game theory and betting strategies and transformed them into a new, visual way to make trading decisions. . . . He has been able to put a value on trading situations which can increase your ability to manage risk as well as clarify expectations --both essential ingredients for success." --from the Foreword by Perry Kaufman author of The New Commodity Trading Systems and Methods. "Gaming the Market is a very welcome and most useful new guide to playing profitably in the biggest and most complex game ever devised -- speculating in the financial markets. Investors and traders who study this book will gain valuable insights into the real nature of the markets and willlearn how to play the game to win." --Thomas A. Bierovic, President, Synergy Futures. "Ronald B. Shelton has extended the field of excursion analysis with an innovative and provocative book that is sure to be widely read--and controversial. By examining the actual distributions of price excursion, he shows a technique to estimate your odds going in on a new position, and within the context of game theory, how to evaluate those chances. All traders and analysts seeking objective bases for trading will want to read this book." --John Sweeney, Technical Editor, Technical Analysis of Stocks and Commodities magazine.
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series, bridging the gap between methods and realistic applications. It presents the most important approaches to the analysis of time series, which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series, Granger causality tests and vector autogressive models are presented. As the modelling of nonstationary uni- or multivariate time series is most important for real applied work, unit root and cointegration analysis as well as vector error correction models are a central topic. Tools for analysing nonstationary data are then transferred to the panel framework. Modelling the (multivariate) volatility of financial time series with autogressive conditional heteroskedastic models is also treated.
Communication Games is a new and radical interpretation of the relationship between culture and communication. It explores the idea that culture and communication studies should be seen predominantly in relation to struggles and conflicts within the social arena. It criticizes the conventional heritage of the social sciences and humanities. Culture and communication are conceived not merely as means of integrating social actors, but as semiotic ways of providing fitness indicators that allow for the resolution of competition between individuals. From the perspective of Peircean semiotics and the Darwinian understanding of life processes, Communication Games redefines culture in terms of Darwin's notion of sexual selection. Moving on from the realization that sexual selection creates individual organisms with conflicting interests, Communication Games emphasizes the contribution of game theory to semiotics and communication studies. The book demonstrates how cooperation and shared conventions eventually emerge, and how conflicts are resolved through the display of costly and inflated signs. It is from these inflated signs and the escalation of excessive messages that cultures gain a certain degree of stability. Communication Games proposes a new way of understanding culture, communication, and semiotic exchange in terms of game theory.
This volume presents selected contributions by top researchers in the field of operations research, originating from the XVI Congress of APDIO. It provides interesting findings and applications of operations research methods and techniques in a wide variety of problems. The contributions address complex real-world problems, including inventory management with lateral transshipments, sectors and routes in solid-waste collection and production planning for perishable food products. It also discusses the latest techniques, making the volume a valuable tool for researchers, students and practitioners who wish to learn about current trends. Of particular interest are the applications of nonlinear and mixed-integer programming, data envelopment analysis, clustering techniques, hybrid heuristics, supply chain management and lot sizing, as well as job scheduling problems. This biennial conference, organized by APDIO, the Portuguese Association of Operational Research, held in Braganca, Portugal, in June 2013, presented a perfect opportunity to discuss the latest development in this field and to narrow the gap between academic researchers and practitioners.
This book features a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in B ethlehem, Pennsylvania, USA between August 16-18, 2017. The conference brought together a diverse group of researchers and practitioners working on both theoretical and practical aspects of continuous and discrete optimization. Topics covered include algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and address the application of deterministic andstochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The selected contributions in this book illustrate the broad diversity of ideas discussed at the meeting.
Game theory is a branch of modern applied mathematics that aims to analyse various problems of conflict between parties that have opposed similar or simply different interests.Games are grouped into several classes according to some important features. In Game Theory (2nd Edition), Petrosyan and Zenkevich consider zero-sum two-person games, strategic N-person games in normal form, cooperative games, games in extensive form with complete and incomplete information, differential pursuit games and differential cooperative, and non-cooperative N-person games. The 2nd edition updates heavily from the 1st edition published in 1996.
Combinational optimization (CO) is a topic in applied mathematics, decision science and computer science that consists of finding the best solution from a non-exhaustive search. CO is related to disciplines such as computational complexity theory and algorithm theory, and has important applications in fields such as operations research/management science, artificial intelligence, machine learning, and software engineering.Advances in Combinatorial Optimization presents a generalized framework for formulating hard combinatorial optimization problems (COPs) as polynomial sized linear programs. Though developed based on the 'traveling salesman problem' (TSP), the framework allows for the formulating of many of the well-known NP-Complete COPs directly (without the need to reduce them to other COPs) as linear programs, and demonstrates the same for three other problems (e.g. the 'vertex coloring problem' (VCP)). This work also represents a proof of the equality of the complexity classes 'P' (polynomial time) and 'NP' (nondeterministic polynomial time), and makes a contribution to the theory and application of 'extended formulations' (EFs).On a whole, Advances in Combinatorial Optimization offers new modeling and solution perspectives which will be useful to professionals, graduate students and researchers who are either involved in routing, scheduling and sequencing decision-making in particular, or in dealing with the theory of computing in general.
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements.
"Impulsive Control in Continuous and Discrete-Continuous Systems" is an up-to-date introduction to the theory of impulsive control in nonlinear systems. This is a new branch of the Optimal Control Theory, which is tightly connected to the Theory of Hybrid Systems. The text introduces the reader to the interesting area of optimal control problems with discontinuous solutions, discussing the application of a new and effective method of discontinuous time-transformation. With a large number of examples, illustrations, and applied problems arising in the area of observation control, this book is excellent as a textbook or reference for a senior or graduate-level course on the subject, as well as a reference for researchers in related fields.
In 2008, November 23-28, the workshop of "Classical Problems on Planar Polynomial Vector Fields " was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincare for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert's 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincare and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.
Ces notes sont consacrees aux inegalites et aux theoremes limites classiques pour les suites de variables aleatoires absolument regulieres ou fortement melangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'etude des processus faiblement dependants aux statisticiens ou aux probabilistes travaillant sur ces processus. |
You may like...
Concepts and Techniques in Genomics and…
N. Saraswathy, P Ramalingam
Paperback
RNA Turnover in Eukaryotes: Analysis of…
Lynne E. Maquat, Megerditch Kiledjian
Hardcover
R4,224
Discovery Miles 42 240
Human Reproductive and Prenatal Genetics
Peter C.K. Leung, Jie Qiao
Hardcover
R4,911
Discovery Miles 49 110
Epigenetics and Metabolomics, Volume 28
Paban K. Agrawala, Poonam Rana
Paperback
R3,516
Discovery Miles 35 160
|