![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
This original and timely monograph describes a unique self-contained excursion that reveals to the readers the roles of two basic cognitive abilities, i.e. intention recognition and arranging commitments, in the evolution of cooperative behavior. This book analyses intention recognition, an important ability that helps agents predict others behavior, in its artificial intelligence and evolutionary computational modeling aspects, and proposes a novel intention recognition method. Furthermore, the book presents a new framework for intention-based decision making and illustrates several ways in which an ability to recognize intentions of others can enhance a decision making process. By employing the new intention recognition method and the tools of evolutionary game theory, this book introduces computational models demonstrating that intention recognition promotes the emergence of cooperation within populations of self-regarding agents. Finally, the book describes how commitment provides a pathway to the evolution of cooperative behavior, and how it further empowers intention recognition, thereby leading to a combined improved strategy. "
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas' lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.
This monograph covers one of the divisions of mathematical theory of control which examines moving objects functionating under conflict and uncertainty conditions. To identify this range of problems we use the term "conflict con trolled processes," coined in recent years. As the name itself does not imply the type of dynamics (difference, ordinary differential, difference-differential, integral, or partial differential equations) the differential games falI within its realms. The problems of search and tracking moving objects are also referred to the field of conflict controlled process. The contents of the monograph is confined to studying classical pursuit-evasion problems which are central to the theory of conflict controlled processes. These problems underlie the theory and are of considerable interest to researchers up to now. It should be noted that the methods of "Line of Sight," "Parallel Pursuit," "Proportional N avigation,""Modified Pursuit" and others have been long and well known among engineers engaged in design of rocket and space technology. An abstract theory of dynamic game problems, in its turn, is based on the methods originated by R. Isaacs, L. S. Pontryagin, and N. N. Krasovskii, and on the approaches developed around these methods. At the heart of the book is the Method of Resolving Functions which was realized within the class of quasistrategies for pursuers and then applied to the solution of the problems of "hand-to-hand," group, and succesive pursuit."
In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques.
This volume results from the "Second International Conference on Dynamics of Disasters" held in Kalamata, Greece, June 29-July 2, 2015. The conference covered particular topics involved in natural and man-made disasters such as war, chemical spills, and wildfires. Papers in this volume examine the finer points of disasters through: Critical infrastructure protection Resiliency Humanitarian logistic Relief supply chains Cooperative game theory Dynamical systems Decision making under risk and uncertainty Spread of diseases Contagion Funding for disaster relief Tools for emergency preparedness Response, and risk mitigation Multi-disciplinary theories, tools, techniques and methodologies are linked with disasters from mitigation and preparedness to response and recovery. The interdisciplinary approach to problems in economics, optimization, government, management, business, humanities, engineering, medicine, mathematics, computer science, behavioral studies, emergency services, and environmental studies will engage readers from a wide variety of fields and backgrounds.
This work presents lines of investigation and scientific achievements of the Ukrainian school of optimization theory and adjacent disciplines. These include the development of approaches to mathematical theories, methodologies, methods, and application systems for the solution of applied problems in economy, finances, energy saving, agriculture, biology, genetics, environmental protection, hardware and software engineering, information protection, decision making, pattern recognition, self-adapting control of complicated objects, personnel training, etc. The methods developed include sequential analysis of variants, nondifferential optimization, stochastic optimization, discrete optimization, mathematical modeling, econometric modeling, solution of extremum problems on graphs, construction of discrete images and combinatorial recognition, etc. Some of these methods became well known in the world's mathematical community and are now known as classic methods.
The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience."
Optimization is a field important in its own right but is also integral to numerous applied sciences, including operations research, management science, economics, finance and all branches of mathematics-oriented engineering. Constrained optimization models are one of the most widely used mathematical models in operations research and management science. This book gives a modern and well-balanced presentation of the subject, focusing on theory but also including algorithims and examples from various real-world applications. The text is easy to read and accessible to anyone with a knowledge of multi-dimensional calculus, linear algebra and basic numerical methods. Detailed examples and counter-examples are provided--as are exercises, solutions and helpful hints, and Matlab/Maple supplements. The intended readership is advanced undergraduates, graduates, and professionals in any of the applied fields.
Recent books in the Wiley Series in Probability and Mathematical Statistics Editors Vic Barnett J. Stuart Hunter Adrian F.M. Smith Geoffrey S. Watson Ralph A. Bradley Joseph B. Kadane Stephen M. Stigler Nicholas I. Fisher David G. Kendall Jozef L. Teugels Optimal Design of Experiments Friedrich Pukelsheim, Universität Augsburg, Augsburg, Germany Optimal Design of Experiments presents the first complete theoretical development of optimal design for the linear model, a unified exposition that embraces a wide variety of design problems. It describes the statistical theory involved in designing experiments, and applies it to typical special cases. The design problems originating from statistics are solved using tools from linear algebra and convex analysis. The material is presented in a very clear, careful and organized way. Rather than assaulting traditional ways of thinking about optimal design, this book pulls together formerly separate entities to create a common framework for diverse design problems that share a common goal. Statisticians, mathematicians, engineers, and operations research specialists will find this book stimulating, challenging, and an asset to their work. 1993 Statistics for Spatial Data, Revised Edition Noel Cressie, Iowa State University, USA Designed for the scientific and engineering professional eager to exploit its enormous potential, Statistics for Spatial Data is a primer to the theory as well as the nuts-and-bolts of this influential technique. Focusing on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, and reveals how spatial statistical models can be used to solve a host of problems in science and engineering. The previous edition was hailed by Mathematical Reviews as "an excellent book which…will become a basic reference". Revised to reflect state-of-the-art developments, this edition also features many detailed examples, numerous illustrations, and over 1000 references. The first fully comprehensive introduction, Statistics for Spatial Data is an essential guide for professionals in biology, earth sciences, civil, electrical and agricultural engineering, geography, epidemiology, and ecology. 1993
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource.
Why do people in a business negotiation settle for less than each of them could and should receive? Two rational players face off in an economic game. Each pursues interests as conventional theory dictates, but all too often, the result is suboptimal. Why do they fail to capture what Dr. Young calls the cooperative surplus? Dr. Young proposes that the root of the problem lies in the philosophical assumptions underlying decision and game theory. The common understanding of economic rationality is fundamentally flawed, he says. It assumes that rational players are always self-interested and that they will make decisions on the basis of consequences. Arguing that no theory of economic rationality developed from this foundation can lead to the desired prescriptive results, Dr. Young maintains that a successful prescriptive theory of rationality must start from a different premise: the notion of actors as autonomous agents who act over and above their inclinations to express their identity. Dr. Young advances his own notion of economic rationality, then seeks to establish rules by which rational economic players can jointly create a common base for business negotiation. The results of bargaining will then be in equilibrium, and a solution optimal to both sides can be reached. Already praised by philosophers in Europe for its innovative vision and practicality, this book is a must for business executives and attorneys engaged in business negotiations, as well as for their colleagues with similar interests in the academic community.
This book addresses and disseminates state-of-the-art research and development of differential evolution (DE) and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques. Differential evolution is a population-based meta-heuristic technique for global optimization capable of handling non-differentiable, non-linear and multi-modal objective functions. Many advances have been made recently in differential evolution, from theory to applications. This book comprises contributions which include theoretical developments in DE, performance comparisons of DE, hybrid DE approaches, parallel and distributed DE for multi-objective optimization, software implementations, and real-world applications. The book is useful for researchers, practitioners, and students in disciplines such as optimization, heuristics, operations research and natural computing.
Using numerical examples to illustrate their concepts and results, this book examines recently developed fuzzy multi-criteria methods, such as Intuitionistic Fuzzy TOPSIS, Intuitionistic Fuzzy TOPSIS & DEA-AHP, Intuitionistic VIKOR, Pythagorean WASPAS, Pythagorean ENTROPI, Hesitant CBD, Hesitant MABAC, Triangular EDAS, Triangular PROMETHEE, q-Rung Orthopair COPRAS, and Fuzzy Type - 2 ELECTRE. Each chapter covers practical applications in addition to fresh developments and results. Given its structure and scope, the book can be used as a textbook in graduate courses on operations research and industrial engineering. It also offers a valuable resource for scientists working in a range of disciplines that require multi-criteria decision making.
Maximizing reader insights into the roles of intelligent agents in networks, air traffic and emergency departments, this volume focuses on congestion in systems where safety and security are at stake, devoting special attention to applying game theoretic analysis of congestion to: protocols in wired and wireless networks; power generation, air transportation and emergency department overcrowding. Reviewing exhaustively the key recent research into the interactions between game theory, excessive crowding, and safety and security elements, this book establishes a new research angle by illustrating linkages between the different research approaches and serves to lay the foundations for subsequent analysis. Congestion (excessive crowding) is defined in this work as all kinds of flows; e.g., road/sea/air traffic, people, data, information, water, electricity, and organisms. Analysing systems where congestion occurs - which may be in parallel, series, interlinked, or interdependent, with flows one way or both ways - this book puts forward new congestion models, breaking new ground by introducing game theory and safety/security into proceedings. Addressing the multiple actors who may hold different concerns regarding system reliability; e.g. one or several terrorists, a government, various local or regional government agencies, or others with stakes for or against system reliability, this book describes how governments and authorities may have the tools to handle congestion, but that these tools need to be improved whilst additionally ensuring safety and security against various threats. This game-theoretic analysis sets this two volume book apart from the current congestion literature and ensures that the work will be of use to postgraduates, researchers, 3rd/4th-year undergraduates, policy makers, and practitioners.
Are people ever rational? Consider this: You auction off a one-dollar bill to the highest bidder, but you set the rules so that the second highest bidder also has to pay the amount of his last bid, even though he gets nothing. Would people ever enter such an auction? Not only do they, but according to Martin Shubik, the game's inventor, the average winning bid (for a dollar, remember) is $3.40. Many winners report that they bid so high only because their opponent "went completely crazy." This game lies at the intersection of three subjects of eternal fascination: human psychology, morality, and John von Neumann's game theory. Hungarian game-theorist Laszlo Mero introduces us to the basics of game theory, including such concepts as zero-sum games, Prisoner's Dilemma and the origins of altruism; shows how game theory is applicable to fields ranging from physics to politics; and explores the role of rational thinking in the context of many different kinds of thinking. This fascinating, urbane book will interest everyone who wonders what mathematics can tell us about the human condition.
In the last decades, algorithmic advances as well as hardware and software improvements have provided an excellent environment to create and develop solving methods to hard optimization problems. Modern exact and heuristic techniques are dramatically enhancing our ability to solve significant practical problems. This monograph sets out state-of-the-art methodologies for solving combinatorial optimization problems, illustrating them with two well-known problems. This second edition of the book extends the first one by adding to the 'linear ordering problem' (LOP), included in the first edition, the 'maximum diversity problem' (MDP). In this way, we provide the reader with the background, elements and strategies to tackle a wide range of different combinatorial optimization problems. The exact and heuristic techniques outlined in these pages can be put to use in any number of combinatorial optimization problems. While the authors employ the LOP and the MDP to illustrate cutting-edge optimization technologies, the book is also a tutorial on how to design effective and successful implementations of exact and heuristic procedures alike. This monograph provides the basic principles and fundamental ideas that will enable students and practitioners to create valuable applications based on both exact and heuristic technologies. Specifically, it is aimed at engineers, scientists, operations researchers, and other applications specialists who are looking for the most appropriate and recent optimization tools to solve particular problems. The book provides a broad spectrum of advances in search strategies with a focus on its algorithmic and computational aspects.
Insurance Economics brings together the economic analysis of decision making under risk, risk management and demand for insurance among individuals and corporations, objectives pursued and management tools used by insurance companies, the regulation of insurance, and the division of labor between private and social insurance. Appropriate both for advanced undergraduate and graduate students of economics, management, and finance, this text provides the background required to understand current research. Predictions derived from theoretical arguments are not merely stated, but also related to empirical evidence. Throughout the book, conclusions summarize key results, helping readers to check their knowledge and comprehension. Issues discussed include paradoxes in decision making under risk and attempts at their resolution, moral hazard and adverse selection including the possibility of a "death spiral", and future challenges to both private and social insurance such as globalization and the availability of genetic information. This second edition has been extensively revised. Most importantly, substantial content has been added to represent the evolution of risk-related research. A new chapter, Insurance Demand II: Nontraditional Approaches, provides a timely addition in view of recent developments in risk theory and insurance. Previous discussions of Enterprise Risk Management, long-term care insurance, adverse selection, and moral hazard have all been updated. In an effort to expand the global reach of the text, evidence and research from the U.S. and China have also been added.
This book offers a comprehensive overview of the financial systems of major industrialized countries using the statistical framework of the financial accounts. After a discussion of how economists agreed to create a framework to monitor the financial linkages between surplus and deficit sectors, the book analyzes in detail the composition and the recent evolution of financial assets and liabilities for households (including public pension rights), firms and intermediaries. Next, the volume studies the convergence patterns of financial structures and their influence on the effectiveness of monetary policy within European countries. The final chapter unifies the previous pictures, showing how the effects of financial integration and global imbalances could have been foreseen based on the financial accounts. The analysis and information contained in the book will help the readers to understand many issues and challenges raised by the recent financial crisis.
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.
This book introduces the advances in synchromodal logistics and provides a framework to classify various optimisation problems in this field. It explores the application of this framework to solve a broad range of problems, such as problems with and without a central decision-maker, problems with and without full information, deterministic problems, problems coping with uncertainty, optimisation of a full network design problem. It covers theoretical constructs, such as discrete optimisation, robust optimisation, optimisation under uncertainty, multi-objective optimisation and agent based equilibrium models. Moreover, practical elaborated use cases are presented to deepen understanding. The book gives both researchers and practitioners a good overview of the field of synchromodal optimisation problems and offers the reader practical methods for modelling and problem-solving.
This book deals with several types of multi-dimensional control problems in the face of data uncertainty for vector cases-multi-dimensional multi-objective control problem with uncertain objective functionals, uncertain constraint functionals, and uncertain objective as well as constraint functionals, uncertain multi-dimensional multi-objective control problem with semi-infinite constraints, uncertain dual multi-dimensional multi-objective variational control problem, and second-order PDE&PDI constrained robust optimization problem. The book provides the solution approaches-an exact l1 penalty function approach, modified objective approach, robust approach-in the simplest way to solve the recent developing optimization problems in the sense of uncertainty.
This book focuses primarily on the nature-inspired approach for designing smart applications. It includes several implementation paradigms such as design and path planning of wireless network, security mechanism and implementation for dynamic as well as static nodes, learning method of cloud computing, data exploration and management, data analysis and optimization, decision taking in conflicting environment, etc. The book fundamentally highlights the recent research advancements in the field of engineering and science.
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed."
This first book focuses on uncertain graph and network optimization. It covers three different main contents: uncertain graph, uncertain programming and uncertain network optimization. It also presents applications of uncertain network optimization in a lot of real problems such as transportation problems, dispatching medical supplies problems and location problems. The book is suitable for researchers, engineers, teachers and students in the field of mathematics, information science, computer science, decision science, management science and engineering, artificial intelligence, industrial engineering, economics and operations research.
Written by a leading expert in turnpike phenomenon, this book is devoted to the study of symmetric optimization, variational and optimal control problems in infinite dimensional spaces and turnpike properties of their approximate solutions. The book presents a systematic and comprehensive study of general classes of problems in optimization, calculus of variations, and optimal control with symmetric structures from the viewpoint of the turnpike phenomenon. The author establishes generic existence and well-posedness results for optimization problems and individual (not generic) turnpike results for variational and optimal control problems. Rich in impressive theoretical results, the author presents applications to crystallography and discrete dispersive dynamical systems which have prototypes in economic growth theory. This book will be useful for researchers interested in optimal control, calculus of variations turnpike theory and their applications, such as mathematicians, mathematical economists, and researchers in crystallography, to name just a few. |
You may like...
Intro to Python for Computer Science and…
Paul Deitel
Paperback
Internet of Things - A Hands-On Approach
Arshdeep Bahga, Vijay Madisetti
Hardcover
|