![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
Supply Chain Optimization captures the latest results in a segment of current research activity in supply chain management. This research area focuses on applying optimization techniques to supply chain management problems. The research papers that make up the volume provide a snapshot of state-of-the-art optimization methods within the field. This book presents rigorous modelling approaches for supply chain operations problems with a goal of improving supply chain performance (or the performance of some segment thereof). It contains high-quality works from leading researchers in the field whose expertise fits within this scope. The book provides a diverse blend of research topics and novel modelling and solution approaches for difficult classes of supply chain operations, planning, and design problems.
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference "Geometry and Symmetry" in Veszprem, Hungary from 29 June to 3 July 2015. The conference was dedicated to Karoly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
This book is a collection of selected papers presented at the Annual Meeting of the European Academy of Management and Business Economics (AEDEM), held at the Faculty of Economics and Business of the University of Barcelona, 05 - 07 June, 2012. This edition of the conference has been presented with the slogan "Creating new opportunities in an uncertain environment". There are different ways for assessing uncertainty in management but this book mainly focused on soft computing theories and their role in assessing uncertainty in a complex world. The present book gives a comprehensive overview of general management topics and discusses some of the most recent developments in all the areas of business and management including management, marketing, business statistics, innovation and technology, finance, sports and tourism. This book might be of great interest for anyone working in the area of management and business economics and might be especially useful for scientists and graduate students doing research in these fields.
This timely book deals with a current topic, i.e. the applications of metaheuristic algorithms, with a primary focus on optimization problems in civil engineering. The first chapter offers a concise overview of different kinds of metaheuristic algorithms, explaining their advantages in solving complex engineering problems that cannot be effectively tackled by traditional methods, and citing the most important works for further reading. The remaining chapters report on advanced studies on the applications of certain metaheuristic algorithms to specific engineering problems. Genetic algorithm, bat algorithm, cuckoo search, harmony search and simulated annealing are just some of the methods presented and discussed step by step in real-application contexts, in which they are often used in combination with each other. Thanks to its synthetic yet meticulous and practice-oriented approach, the book is a perfect guide for graduate students, researchers and professionals willing to applying metaheuristic algorithms in civil engineering and other related engineering fields, such as mechanical, transport and geotechnical engineering. It is also a valuable aid for both lectures and advanced engineering students.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lately, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
This book covers the latest advances in playful user interfaces - interfaces that invite social and physical interaction. These new developments include the use of audio, visual, tactile and physiological sensors to monitor, provide feedback and anticipate the behavior of human users. The decreasing cost of sensor and actuator technology makes it possible to integrate physical behavior information in human-computer interactions. This leads to many new entertainment and game applications that allow or require social and physical interaction in sensor- and actuator-equipped smart environments. The topics discussed include: human-nature interaction, human-animal interaction and the interaction with tangibles that are naturally integrated in our smart environments. Digitally supported remote audience participation in artistic or sport events is also discussed. One important theme that emerges throughout the book is the involvement of users in the digital-entertainment design process or even design and implementation of interactive entertainment by users themselves, including children doing so in educational settings.
This volume explores the emerging and current, cutting-edge theories and methods of modeling, optimization, dynamics and bio economy. It provides an overview of the main issues, results and open questions in these fields as well as covers applications to biology, economy, energy, industry, physics, psychology and finance. The majority of the contributed papers for this volume come from the participants of the International Conference on Modeling, Optimization and Dynamics (ICMOD 2010), a satellite conference of EURO XXIV Lisbon 2010, which took place at Faculty of Sciences of University of Porto, Portugal and from the Berkeley Bio economy Conference 2012, at the University of California, Berkeley, USA.
The concepts and techniques presented in this volume originated from the fields of dynamics, statistics, control theory, computer science and informatics, and are applied to novel and innovative real-world applications. Over the past few decades, the use of dynamic systems, control theory, computing, data mining, machine learning and simulation has gained the attention of numerous researchers from all over the world. Admirable scientific projects using both model-free and model-based methods coevolved at today's research centers and are introduced in conferences around the world, yielding new scientific advances and helping to solve important real-world problems. One important area of progress is the bioeconomy, where advances in the life sciences are used to produce new products in a sustainable and clean manner. In this book, scientists from all over the world share their latest insights and important findings in the field. The majority of the contributed papers for this volume were written by participants of the 3rd International Conference on Dynamics, Games and Science, DGSIII, held at the University of Porto in February 2014, and at the Berkeley Bioeconomy Conference at the University of California at Berkeley in March 2014. The aim of the project of this book "Modeling, Dynamics, Optimization and Bioeconomics II" follows the same aim as its companion piece, "Modeling, Dynamics, Optimization and Bioeconomics I," namely, the exploration of emerging and cutting-edge theories and methods for modeling, optimization, dynamics and bioeconomy.
The era of interior point methods (IPMs) was initiated by N. Karmarkar's 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
New Approaches to Circle Packing into the Square is devoted to the most recent results on the densest packing of equal circles in a square. In the last few decades, many articles have considered this question, which has been an object of interest since it is a hard challenge both in discrete geometry and in mathematical programming. The authors have studied this geometrical optimization problem for a long time, and they developed several new algorithms to solve it. The book completely covers the investigations on this topic.
This book presents the latest research findings and state-of-the-art solutions on optimization techniques and provides new research direction and developments. Both the theoretical and practical aspects of the book will be much beneficial to experts and students in optimization and operation research community. It selects high quality papers from The International Conference on Optimization: Techniques and Applications (ICOTA2013). The conference is an official conference series of POP (The Pacific Optimization Research Activity Group; there are over 500 active members). These state-of-the-art works in this book authored by recognized experts will make contributions to the development of optimization with its applications.
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. Its contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 14th International Symposium of Dynamic Games and Applications held in Banff. "Advances in Dynamic Games" covers a variety of topics, ranging from evolutionary games, theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as mathematical biology, environmental management, finance and economics, engineering, guidance and control, and social interaction. Featured throughout are valuable tools and resources for researchers, practitioners, and graduate students interested in dynamic games and their applications to mathematics, engineering, economics, and management science. "
The book presents a unified treatment of integer programming and network models with topics ranging from exact and heuristic algorithms to network flows, traveling salesman tours, and traffic assignment problems. While the emphasis of the book is on models and applications, the most important methods and algorithms are described in detail and illustrated by numerical examples. The formulations and the discussion of a large variety of models provides insight into their structures that allows the user to better evaluate the solutions to the problems.
Structural Optimization is intended to supplement the engineer s box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. It begins with an introduction to structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations. It then discusses solution methods for optimization problems such as the classic method of linear programming which leads to the method of sequential linear programming. It then proposes using sequential linear programming together with the incremental equations of structures as a general method for structural optimization. It is furthermore intended to give the engineer an overview of the field of structural optimization."
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
This book covers some important topics in the construction of computable general equilibrium (CGE) models and examines use of these models for the analysis of economic policies, their properties, and their implications. Readers will find explanation and discussion of the theoretical structure and practical application of several model typologies, including dynamic, stochastic, micro-macro, and simulation models, as well as different closure rules and policy experiments. The presentation of applications to various country and problem-specific case studies serves to provide an informed and clearly articulated summary of the state of the art and the most important methodological advancements in the field of policy modeling within the framework of general equilibrium analysis. The book is an outcome of a recent workshop of the Italian Development Economists Association attended by a group of leading practitioners involved in the generation of CGE models and research on modeling the economy and policy making. It will be of interest to researchers, professional economists, graduate students, and knowledgeable policy makers.
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three parts: - Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces. - Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schroedinger operators, as needed in quantum physics and quantum information theory - are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations. - Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire's fundamental results and their main consequences, and bilinear functionals. Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.
This chapter is organized as follows. The economic problem on which this book focuses is motivated in Section 1. The two tools used to study this economic problem, which are real options theory and game theory, are discussed in Sections 2 and 3, respectively. Section 4 surveys the contents of this book. In Section 5 some promising extensions of the research presented in this book are listed. 1. TECHNOLOGY INVESTMENT Investment expenditures of companies govern economic growth. Es pecially investments in new and more efficient technologies are an impor tant determinant. In particular, in the last two decades an increasing part of the investment expenditures concerns investments in informa tion and communication technology. Kriebel, 1989 notes that (already) in 1989 roughly 50 percent of new corporate capital expenditures by major United States companies was in information and communication technology. Due to the rapid progress in these technologies, the tech nology investment decision of the individual firm has become a very complex matter. As an example of the very high pace of technological improvement consider the market for personal computers. IBM intro duced its Pentium personal computers in the early 1990s at the same price at which it introduced its 80286 personal computers in the 1980s. Therefore it took less than a decade to improve on the order of twenty times in terms of both speed and memory capacities, without increasing the cost (Yorukoglu, 1998)."
For both public and private managers, the book Optimization Methods
for a Stakeholder Society is today's key to answer the problem of a
sustainable development world. This world has to take into account
the meaning of all stakeholders involved and has to reconcile a
number of objectives, such as economic growth, employment and
preservation of the ecosystem. Traditional methods, such as
cost-benefit, are outmoded as they translate all these objectives
into monetary costs, a materialistic approach. On the contrary,
objectives have rather to stick to their own units, eventually
indicators.
This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the digital information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, the book serves to offer a data-driven view of optimization, through the framework of memetic computation (MC). The authors provide a summary of the complete timeline of research activities in MC - beginning with the initiation of memes as local search heuristics hybridized with evolutionary algorithms, to their modern interpretation as computationally encoded building blocks of problem-solving knowledge that can be learned from one task and adaptively transmitted to another. In the light of recent research advances, the authors emphasize the further development of MC as a simultaneous problem learning and optimization paradigm with the potential to showcase human-like problem-solving prowess; that is, by equipping optimization engines to acquire increasing levels of intelligence over time through embedded memes learned independently or via interactions. In other words, the adaptive utilization of available knowledge memes makes it possible for optimization engines to tailor custom search behaviors on the fly - thereby paving the way to general-purpose problem-solving ability (or artificial general intelligence). In this regard, the book explores some of the latest concepts from the optimization literature, including, the sequential transfer of knowledge across problems, multitasking, and large-scale (high dimensional) search, systematically discussing associated algorithmic developments that align with the general theme of memetics. The presented ideas are intended to be accessible to a wide audience of scientific researchers, engineers, students, and optimization practitioners who are familiar with the commonly used terminologies of evolutionary computation. A full appreciation of the mathematical formalizations and algorithmic contributions requires an elementary background in probability, statistics, and the concepts of machine learning. A prior knowledge of surrogate-assisted/Bayesian optimization techniques is useful, but not essential.
ELEMENTARY LINEAR ALGEBRA, 8E, INTERNATIONAL METRIC EDITION's clear, careful, and concise presentation of material helps you fully understand how mathematics works. The author balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. To engage you in the material, a new design highlights the relevance of the mathematics and makes the book easier to read. Data and applications reflect current statistics and examples, demonstrating the link between theory and practice. The companion website LarsonLinearAlgebra.com offers free access to multiple study tools and resources. CalcChat.com offers free step-by-step solutions to the odd-numbered exercises in the text.
This book provides a comprehensive and practically minded introduction into serious games for law enforcement agencies. Serious games offer wide ranging benefits for law enforcement with applications from professional trainings to command-level decision making to the preparation for crises events. This book explains the conceptual foundations of virtual and augmented reality, gamification and simulation. It further offers practical guidance on the process of serious games development from user requirements elicitation to evaluation. The chapters are intended to provide principles, as well as hands-on knowledge to plan, design, test and apply serious games successfully in a law enforcement environment. A diverse set of case studies showcases the enormous variety that is possible in serious game designs and application areas and offers insights into concrete design decisions, design processes, benefits and challenges. The book is meant for law enforcement professionals interested in commissioning their own serious games as well as game designers interested in collaborative pedagogy and serious games for the law enforcement and security sector. |
![]() ![]() You may like...
Developing Windows-Based and Web-Enabled…
Nong Ye, Teresa Wu
Paperback
R2,009
Discovery Miles 20 090
Research Advances in Intelligent…
Anshul Verma, Pradeepika Verma, …
Hardcover
R3,274
Discovery Miles 32 740
Fiscal Policies in High Debt Euro-Area…
Antonella Cavallo, Pietro Dallari, …
Hardcover
R3,828
Discovery Miles 38 280
Artificial Intelligence Perspective for…
Sezer Bozkus Kahyaoglu, Vahap Tecim
Hardcover
R3,138
Discovery Miles 31 380
Applications of Mathematical Modeling…
Madhu Jain, Dinesh K. Sharma, …
Hardcover
R4,933
Discovery Miles 49 330
Quality Management for Organizational…
David Goetsch, Stanley Davis
Paperback
R2,723
Discovery Miles 27 230
|