![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
This volume contains select papers presented during the 2nd National Conference on Multidisciplinary Analysis and Optimization. It discusses new developments at the core of optimization methods and its application in multiple applications. The papers showcase fundamental problems and applications which include domains such as aerospace, automotive and industrial sectors. The variety of topics and diversity of insights presented in the general field of optimization and its use in design for different applications will be of interest to researchers in academia or industry.
Our understanding of information and information dynamics has outgrown classical information theory. The theory does not account for the value or influence of information within the context of a system or network and does not explain how these properties might influence how information flows though and interacts with a system. The invited chapters in this collection present new theories, methods, and applications that address some of these limitations. Dynamics of Information Systems presents state-of-the-art research explaining the importance of information in the evolution of a distributed or networked system. This book presents techniques for measuring the value or significance of information within the context of a system. Each chapter reveals a unique topic or perspective from experts in this exciting area of research. These newly developed techniques have numerous applications including: the detection of terrorist networks, the design of highly functioning businesses and computer systems, modeling the distributed sensory and control physiology of animals, quantum entanglement and genome modeling, multi-robotic systems design, as well as industrial and manufacturing safety.
This unique book describes how the General Algebraic Modeling System (GAMS) can be used to solve various power system operation and planning optimization problems. This book is the first of its kind to provide readers with a comprehensive reference that includes the solution codes for basic/advanced power system optimization problems in GAMS, a computationally efficient tool for analyzing optimization problems in power and energy systems. The book covers theoretical background as well as the application examples and test case studies. It is a suitable reference for dedicated and general audiences including power system professionals as well as researchers and developers from the energy sector and electrical power engineering community and will be helpful to undergraduate and graduate students.
Optimization has become an essential tool in addressing the limitation of resources and need for better decision-making in the medical field. Both continuous and discrete mathematical techniques are playing an increasingly important role in understanding several fundamental problems in medicine. This volume presents a wide range of medical applications that can utilize mathematical computing. Examples include using an algorithm for considering the seed reconstruction problem in brachytherapy and using optimization-classification models to assist in the early prediction, diagnosis and detection of diseases. Discrete optimization techniques and measures derived from the theory of nonlinear dynamics, with analysis of multi-electrode electroencephalographic (EEG) data, assist in predicting impending epileptic seizures. Mathematics in medicine can also be found in recent cancer research. Sophisticated mathematical models and optimization algorithms have been used to generate treatment plans for radionuclide implant and external beam radiation therapy. Optimization techniques have also been used to automate the planning process in Gamma Knife treatment, as well as to address a variety of medical image registration problems. This work grew out of a workshop on optimization which was held during the 2005 CIM Thematic Term on Optimization in Coimbra, Portugal. It provides an overview of the state-of-the-art in optimization in medicine and will serve as an excellent reference for researchers in the medical computing community and for those working in applied mathematics and optimization."
This book provides a contemporary treatment of quantitative economics, with a focus on data science. The book introduces the reader to R and RStudio, and uses expert Hadley Wickham's tidyverse package for different parts of the data analysis workflow. After a gentle introduction to R code, the reader's R skills are gradually honed, with the help of "your turn" exercises. At the heart of data science is data, and the book equips the reader to import and wrangle data, (including network data). Very early on, the reader will begin using the popular ggplot2 package for visualizing data, even making basic maps. The use of R in understanding functions, simulating difference equations, and carrying out matrix operations is also covered. The book uses Monte Carlo simulation to understand probability and statistical inference, and the bootstrap is introduced. Causal inference is illuminated using simulation, data graphs, and R code for applications with real economic examples, covering experiments, matching, regression discontinuity, difference-in-difference, and instrumental variables. The interplay of growth related data and models is presented, before the book introduces the reader to time series data analysis with graphs, simulation, and examples. Lastly, two computationally intensive methods-generalized additive models and random forests (an important and versatile machine learning method)-are introduced intuitively with applications. The book will be of great interest to economists-students, teachers, and researchers alike-who want to learn R. It will help economics students gain an intuitive appreciation of applied economics and enjoy engaging with the material actively, while also equipping them with key data science skills.
Computational and theoretical open problems in optimization, computational geometry, data science, logistics, statistics, supply chain modeling, and data analysis are examined in this book. Each contribution provides the fundamentals needed to fully comprehend the impact of individual problems. Current theoretical, algorithmic, and practical methods used to circumvent each problem are provided to stimulate a new effort towards innovative and efficient solutions. Aimed towards graduate students and researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, this book provides a broad comprehensive approach to understanding the significance of specific challenging or open problems within each discipline. The contributions contained in this book are based on lectures focused on "Challenges and Open Problems in Optimization and Data Science" presented at the Deucalion Summer Institute for Advanced Studies in Optimization, Mathematics, and Data Science in August 2016.
This book presents the mathematical theory of vector variational inequalities and their relations with vector optimization problems. It is the first-ever book to introduce well-posedness and sensitivity analysis for vector equilibrium problems. The first chapter provides basic notations and results from the areas of convex analysis, functional analysis, set-valued analysis and fixed-point theory for set-valued maps, as well as a brief introduction to variational inequalities and equilibrium problems. Chapter 2 presents an overview of analysis over cones, including continuity and convexity of vector-valued functions. The book then shifts its focus to solution concepts and classical methods in vector optimization. It describes the formulation of vector variational inequalities and their applications to vector optimization, followed by separate chapters on linear scalarization, nonsmooth and generalized vector variational inequalities. Lastly, the book introduces readers to vector equilibrium problems and generalized vector equilibrium problems. Written in an illustrative and reader-friendly way, the book offers a valuable resource for all researchers whose work involves optimization and vector optimization.
Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach noisy optimization from a layman's perspective; this book remedies that gap. Beginning with the foundations of evolutionary optimization, the book subsequently explores the principles of noisy optimization in single and multi-objective settings, and presents detailed illustrations of the principles developed for application in real-world multi-agent coordination problems. Special emphasis is given to the design of intelligent algorithms for noisy optimization in real-time applications. The book is unique in terms of its content, writing style and above all its simplicity, which will appeal to readers with a broad range of backgrounds. The book is divided into 7 chapters, the first of which provides an introduction to Swarm and Evolutionary Optimization algorithms. Chapter 2 includes a thorough review of agent architectures for multi-agent coordination. In turn, Chapter 3 provides an extensive review of noisy optimization, while Chapter 4 addresses issues of noise handling in the context of single-objective optimization problems. An illustrative case study on multi-robot path-planning in the presence of measurement noise is also highlighted in this chapter. Chapter 5 deals with noisy multi-objective optimization and includes a case study on noisy multi-robot box-pushing. In Chapter 6, the authors examine the scope of various algorithms in noisy optimization problems. Lastly, Chapter 7 summarizes the main results obtained in the previous chapters and elaborates on the book's potential with regard to real-world noisy optimization problems.
Nash equilibrium is the central solution concept in Game Theory. Since Nash's original paper in 1951, it has found countless applications in modeling strategic behavior of traders in markets, (human) drivers and (electronic) routers in congested networks, nations in nuclear disarmament negotiations, and more. A decade ago, the relevance of this solution concept was called into question by computer scientists, who proved (under appropriate complexity assumptions) that computing a Nash equilibrium is an intractable problem. And if centralized, specially designed algorithms cannot find Nash equilibria, why should we expect distributed, selfish agents to converge to one? The remaining hope was that at least approximate Nash equilibria can be efficiently computed.Understanding whether there is an efficient algorithm for approximate Nash equilibrium has been the central open problem in this field for the past decade. In this book, we provide strong evidence that even finding an approximate Nash equilibrium is intractable. We prove several intractability theorems for different settings (two-player games and many-player games) and models (computational complexity, query complexity, and communication complexity). In particular, our main result is that under a plausible and natural complexity assumption ("Exponential Time Hypothesis for PPAD"), there is no polynomial-time algorithm for finding an approximate Nash equilibrium in two-player games. The problem of approximate Nash equilibrium in a two-player game poses a unique technical challenge: it is a member of the class PPAD, which captures the complexity of several fundamental total problems, i.e., problems that always have a solution; and it also admits a quasipolynomial time algorithm. Either property alone is believed to place this problem far below NP-hard problems in the complexity hierarchy; having both simultaneously places it just above P, at what can be called the frontier of intractability. Indeed, the tools we develop in this book to advance on this frontier are useful for proving hardness of approximation of several other important problems whose complexity lies between P and NP: Brouwer's fixed point, market equilibrium, CourseMatch (A-CEEI), densest k-subgraph, community detection, VC dimension and Littlestone dimension, and signaling in zero-sum games.
This Volume discusses the underlying principles and analysis of the different concepts associated with an emerging socio-inspired optimization tool referred to as Cohort Intelligence (CI). CI algorithms have been coded in Matlab and are freely available from the link provided inside the book. The book demonstrates the ability of CI methodology for solving combinatorial problems such as Traveling Salesman Problem and Knapsack Problem in addition to real world applications from the healthcare, inventory, supply chain optimization and Cross-Border transportation. The inherent ability of handling constraints based on probability distribution is also revealed and proved using these problems.
A unique interdisciplinary foundation for real-world problem solving Stochastic search and optimization techniques are used in a vast number of areas, including aerospace, medicine, transportation, and finance, to name but a few. Whether the goal is refining the design of a missile or aircraft, determining the effectiveness of a new drug, developing the most efficient timing strategies for traffic signals, or making investment decisions in order to increase profits, stochastic algorithms can help researchers and practitioners devise optimal solutions to countless real-world problems. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control is a graduate-level introduction to the principles, algorithms, and practical aspects of stochastic optimization, including applications drawn from engineering, statistics, and computer science. The treatment is both rigorous and broadly accessible, distinguishing this text from much of the current literature and providing students, researchers, and practitioners with a strong foundation for the often-daunting task of solving real-world problems. The text covers a broad range of today’s most widely used stochastic algorithms, including:
The book includes over 130 examples, Web links to software and data sets, more than 250 exercises for the reader, and an extensive list of references. These features help make the text an invaluable resource for those interested in the theory or practice of stochastic search and optimization.
This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. In the third edition, much of the material has been reorganized, new examples have been added, and a new chapter has been added describing how modelers can improve the performance of their models. The authors have also modified their recommended method for importing Pyomo. A big change in this edition is the emphasis of concrete models, which provide fewer restrictions on the specification and use of Pyomo models. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.
Network Analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of these proceedings is to overcome this difficulty by collecting the major results found by the participants of the "First International Conference in Network Analysis," held at The University of Florida, Gainesville, USA, from the 14th to the 16th of December 2011. The contributions of this conference not only come from different fields, but also cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology and applications.
This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.
This book surveys new algorithmic approaches and applications to natural and man-made disasters such as oil spills, hurricanes, earthquakes and wildfires. Based on the "Third International Conference on Dynamics of Disasters" held in Kalamata, Greece, July 2017, this Work includes contributions in evacuation logistics, disaster communications between first responders, disaster relief, and a case study on humanitarian logistics. Multi-disciplinary theories, tools, techniques and methodologies are linked with disasters from mitigation and preparedness to response and recovery. The interdisciplinary approach to problems in economics, optimization, government, management, business, humanities, engineering, medicine, mathematics, computer science, behavioral studies, emergency services, and environmental studies will engage readers from a wide variety of fields and backgrounds.
Optimization problems are of great importance across a broad range of fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. This book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments. The authors involved in this book are among the top researchers in their domain.
This monograph describes a new family of algorithms for the simultaneous localization and mapping (SLAM) problem in robotics, called FastSLAM. The FastSLAM-type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in a number of robot application domains and have been successfully applied in different dynamic environments, including a solution to the problem of people tracking.
This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.
This volume contains the proceedings of the XII Symposium of Probability and Stochastic Processes which took place at Universidad Autonoma de Yucatan in Merida, Mexico, on November 16-20, 2015. This meeting was the twelfth meeting in a series of ongoing biannual meetings aimed at showcasing the research of Mexican probabilists as well as promote new collaborations between the participants. The book features articles drawn from different research areas in probability and stochastic processes, such as: risk theory, limit theorems, stochastic partial differential equations, random trees, stochastic differential games, stochastic control, and coalescence. Two of the main manuscripts survey recent developments on stochastic control and scaling limits of Markov-branching trees, written by Kazutoshi Yamasaki and Benedicte Haas, respectively. The research-oriented manuscripts provide new advances in active research fields in Mexico. The wide selection of topics makes the book accessible to advanced graduate students and researchers in probability and stochastic processes.
Reinhard Selten, to date the only German Nobel Prize laureate in economics, celebrates his 80th birthday in 2010. While his contributions to game theory are well-known, the behavioral side of his scientific work has received less public exposure, even though he has been committed to experimental research during his entire career, publishing more experimental than theoretical papers in top-tier journals. This Festschrift is dedicated to Reinhard Selten's exceptional influence on behavioral and experimental economics. In this collection of academic highlight papers, a number of his students are joined by leading scholars in experimental research to document the historical role of the "Meister" in the development of the research methodology and of several sub-fields of behavioral economics. Next to the academic insight in these highly active fields of experimental research, the papers also provide a glance at Reinhard Selten's academic and personal interaction with his students and peers.
This book presents and applies a novel efficient meta-heuristic optimization algorithm called Colliding Bodies Optimization (CBO) for various optimization problems. The first part of the book introduces the concepts and methods involved, while the second is devoted to the applications. Though optimal design of structures is the main topic, two chapters on optimal analysis and applications in constructional management are also included. This algorithm is based on one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass. After a collision of two moving bodies with specified masses and velocities, these bodies again separate, with new velocities. This collision causes the agents to move toward better positions in the search space. The main algorithm (CBO) is internally parameter independent, setting it apart from previously developed meta-heuristics. This algorithm is enhanced (ECBO) for more efficient applications in the optimal design of structures. The algorithms are implemented in standard computer programming languages (MATLAB and C++) and two main codes are provided for ease of use.
Agent-based modeling and social simulation have emerged as an interdisciplinary area of social science that includes computational economics, organizational science, social dynamics, and complex systems. This area contributes to enriching our understanding of the fundamental processes of social phenomena caused by complex interactions among agents. Bringing together diverse approaches to social simulation and research agendas, this book presents a unique collection of contributions from the Second World Congress on Social Simulation, held in 2008 at George Mason University in Washington DC, USA. This book in particular includes articles on norms, diffusion, social networks, economy, markets and organizations, computational modeling, and programming environments, providing new hypotheses and theories, new simulation experiments compared with various data sets, and new methods for model design and development. These works emerged from a global and interdisciplinary scientific community of the three regional scientific associations for social simulation: the North American Association for Computational Social and Organizational Science (NAACSOS; now the Computational Social Science Society, CSSS), the European Social Simulation Association (ESSA), and the Pacific Asian Association for Agent-bBased Approach in Social Systems Sciences (PAAA)."
This state-of-the-art collection of papers on the theory of Cournotian competition focuses on two main subjects: oligopolistic Cournot competition and contests. The contributors present various applications of the Cournotian Equilibrium Theory, addressing topics such as equilibrium existence and uniqueness, equilibrium structure, dynamic processes, coalitional behavior and welfare. Special emphasis is placed on the aggregative nature of the games that are relevant to such theory. This contributed volume was written to celebrate the 80th birthday of Prof. Koji Okuguchi, a pioneer in oligopoly theory. |
![]() ![]() You may like...
E-Learning and Digital Education in the…
M. Mahruf C. Shohel
Hardcover
R4,084
Discovery Miles 40 840
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R4,620
Discovery Miles 46 200
Evolutionary Constrained Optimization
Rituparna Datta, Kalyanmoy Deb
Hardcover
Progress in Turbulence VII - Proceedings…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
Control of Noise and Structural…
Qibo Mao, Stanislaw Pietrzko
Hardcover
R6,288
Discovery Miles 62 880
Dynamics and Vibrations - Progress in…
Seyed Habibollah Hashemi Kachapi, Davood Domairry Ganji
Hardcover
|