![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
This second edition of "A Beginner's Guide to Finite Mathematics" takes a distinctly applied approach to finite mathematics at the freshman and sophomore level. Topics are presented sequentially: the book opens with a brief review of sets and numbers, followed by an introduction to data sets, histograms, means and medians. Counting techniques and the Binomial Theorem are covered, which provides the foundation for elementary probability theory; this, in turn, leads to basic statistics. This new edition includes chapters on game theory and financial mathematics. Requiring little mathematical background beyond high school algebra, the text will be especially useful for business and liberal arts majors.
This book introduces a holistic approach to ship design and its optimisation for life-cycle operation. It deals with the scientific background of the adopted approach and the associated synthesis model, which follows modern computer aided engineering (CAE) procedures. It integrates techno-economic databases, calculation and multi-objective optimisation modules and s/w tools with a well-established Computer-Aided Design (CAD) platform, along with a Virtual Vessel Framework (VVF), which will allow virtual testing before the building phase of a new vessel. The resulting graphic user interface (GUI) and information exchange systems enable the exploration of the huge design space to a much larger extent and in less time than is currently possible, thus leading to new insights and promising new design alternatives. The book not only covers the various stages of the design of the main ship system, but also addresses relevant major onboard systems/components in terms of life-cycle performance to offer readers a better understanding of suitable outfitting details, which is a key aspect when it comes the outfitting-intensive products of international shipyards. The book disseminates results of the EU funded Horizon 2020 project HOLISHIP.
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima's symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient. The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the low-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics.
Lagrange and penalty function methods provide a powerful approach, both as a theoretical tool and a computational vehicle, for the study of constrained optimization problems. However, for a nonconvex constrained optimization problem, the classical Lagrange primal-dual method may fail to find a mini mum as a zero duality gap is not always guaranteed. A large penalty parameter is, in general, required for classical quadratic penalty functions in order that minima of penalty problems are a good approximation to those of the original constrained optimization problems. It is well-known that penaity functions with too large parameters cause an obstacle for numerical implementation. Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints. Some approaches for such a scheme are studied in this book. One of them is as follows: an unconstrained problem is constructed, where the objective function is a convolution of the objective and constraint functions of the original problem. While a linear convolution leads to a classical Lagrange function, different kinds of nonlinear convolutions lead to interesting generalizations. We shall call functions that appear as a convolution of the objective function and the constraint functions, Lagrange-type functions."
Game theory is rapidly becoming one of the cornerstones of the social sciences. The articles gathered here chart the intellectual history of game theory from its place in the Enlightenment tradition, through the explosion of literature in the late 1970s, to issues of current and emerging debates. This extensively indexed set will be a valuable reference tool to researchers in sociology and politics, as well as economics.
Encompassing all the major topics students will encounter in courses on the subject, the authors teach both the underlying mathematical foundations and how these ideas are implemented in practice. They illustrate all the concepts with both worked examples and plenty of exercises, and, in addition, provide software so that students can try out numerical methods and so hone their skills in interpreting the results. As a result, this will make an ideal textbook for all those coming to the subject for the first time. Authors' note: A problem recently found with the software is due to a bug in Formula One, the third party commercial software package that was used for the development of the interface. It occurs when the date, currency, etc. format is set to a non-United States version. Please try setting your computer date/currency option to the United States option . The new version of Formula One, when ready, will be posted on WWW.
Mathematical elegance is a constant theme in this treatment of linear programming and matrix games. Condensed tableau, minimal in size and notation, are employed for the simplex algorithm. In the context of these tableau the beautiful termination theorem of R.G. Bland is proven more simply than heretofore, and the important duality theorem becomes almost obvious. Examples and extensive discussions throughout the book provide insight into definitions, theorems, and applications. There is considerable informal discussion on how best to play matrix games. The book is designed for a one-semester undergraduate course. Readers will need a degree of mathematical sophistication and general tools such as sets, functions, and summation notation. No single college course is a prerequisite, but most students will do better with some prior college mathematics. This thorough introduction to linear programming and game theory will impart a deep understanding of the material and also increase the student's mathematical maturity.
The book begins with an introduction to some of the basic concepts and results on chaotic dynamical systems. Next it turns to a detailed self-contained summary of the literature on discounted dynamic optimization. The first two chapters are of particular pedagogical interest. The volume also brings together a number of outstanding advanced research papers on complex behavior of dynamic economic models. These make it clear that complexity cannot be dismissed as "exceptional" or "pathological" and, for explanation and prediction of economic variables, it is imperative to develop models with special structures suggested by empirical studies. Graduate students in economics will find the book valuable for an introduction to optimization and chaos. Specialists will find new directions to explore themes like robustness of chaotic behavior and the role of discounting in generating cycles and complexity.
This textbook examines a broad range of problems in science and engineering, describing key numerical methods applied to real life. The case studies presented are in such areas as data fitting, vehicle route planning and optimal control, scheduling and resource allocation, sensitivity calculations and worst-case analysis. Chapters are self-contained with exercises provided at the end of most sections. Nonlinear Optimization with Engineering Applications is ideal for self-study and classroom use in engineering courses at the senior undergraduate or graduate level. The book will also appeal to postdocs and advanced researchers interested in the development and use of optimization algorithms.
The results presented in this book are a product of research conducted by the author independently and in collaboration with other researchers in the field. In this light, this work encompasses the most recent collection of various concepts of regularity and nonsmooth analysis into one monograph. The first part of the book attempts to present an accessible and thorough introduction to nonsmooth analysis theory. Main concepts and some useful results are stated and illustrated through examples and exercises. The second part gathers the most prominent and recent results of various regularity concepts of sets, functions, and set-valued mappings in nonsmooth analysis. The third and final section contains six different application, with comments in relation to the existing literature.
The objective of this book is to advance the current knowledge of sensor research particularly highlighting recent advances, current work, and future needs. The goal is to share current technologies and steer future efforts in directions that will benefit the majority of researchers and practitioners working in this broad field of study.
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.
A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders' decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders' algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.
This book examines the main methodological and theoretical developments in stochastic global optimization. It is designed to inspire readers to explore various stochastic methods of global optimization by clearly explaining the main methodological principles and features of the methods. Among the book's features is a comprehensive study of probabilistic and statistical models underlying the stochastic optimization algorithms.
This proceedings volume, the fifth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 19th annual workshop, held online due to the COVID-19 pandemic. Organized every year since 2003 by the New York Number Theory Seminar at the CUNY Graduate Center, the workshops survey state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. The CANT 2021 meeting featured over a hundred speakers from North and South America, Europe, Asia, Australia, and New Zealand, and was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain peer-reviewed and edited papers on current topics in number theory. Topics featured in this volume include sumsets, minimal bases, Sidon sets, analytic and prime number theory, combinatorial and discrete geometry, numerical semigroups, and a survey of expansion, divisibility, and parity. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.
The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods."
The game of Dots-and-Boxes, the popular game in which two players take turns connecting an array of dots to form squares, or "boxes" has long been considered merely a child's game. In this book, however, the author reveals the surprising complexity of the game, along with advanced strategies that will allow the reader to win at any level of gameplay desired. This book is an essential guide to the game of Dots-and-Boxes and its mathematical underpinnings. Chapters of strategy are interspersed with dozens of sample problems and their solutions. Furthermore, the strategies can be applied to several other games, such as Strings-and-Coins and Nimstring.
In this chapter the topic of this book is introduced. Section 1. 1 provides a brief and rather general motivation for the scientific project undertaken here. Interest groups are a very popular object of scientific inquiry, and they received already considerable research attention from scholars in political science, as well as from researchers in economics. Necessarily, then, this book adds to a literature which is already quite developed. A detailed positioning in this literature of the theoretical material presented in this monograph will be given in Chapter 2. This second chapter will also, by means of a review of the empirical literature, provide a more general overview of the issues deemed to be important when studying the influence of interest groups on public policy. The outline of the entire book is described in greater detail in Section 1. 2. As most issues involved are more easily presented in later chapters, this introductory chapter is kept brief. 1. 1 MOTIVATION Substantial political power is often attributed to interest groups. Examples abound in both the economics and political science literature, as well as in journalistic accounts and popular publications. On many occasions the authors express concerns about the negative impact of interest groups on the democratic quality of government. "The interests of a small group are served at the expense of the interests of the general public, the taxpayers ," is an often heard popular complaint.
This Festschrift is dedicated to Goetz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Goetz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Goetz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.
The scope of this volume is primarily to analyze from different methodological perspectives similar valuation and optimization problems arising in financial applications, aimed at facilitating a theoretical and computational integration between methods largely regarded as alternatives. Increasingly in recent years, financial management problems such as strategic asset allocation, asset-liability management, as well as asset pricing problems, have been presented in the literature adopting formulation and solution approaches rooted in stochastic programming, robust optimization, stochastic dynamic programming (including approximate SDP) methods, as well as policy rule optimization, heuristic approaches and others. The aim of the volume is to facilitate the comprehension of the modeling and methodological potentials of those methods, thus their common assumptions and peculiarities, relying on similar financial problems. The volume will address different valuation problems common in finance related to: asset pricing, optimal portfolio management, risk measurement, risk control and asset-liability management.The volume features chapters of theoretical and practical relevance clarifying recent advances in the associated applied field from different standpoints, relying on similar valuation problems and, as mentioned, facilitating a mutual and beneficial methodological and theoretical knowledge transfer. The distinctive aspects of the volume can be summarized as follows: Strong benchmarking philosophy, with contributors explicitly asked to underline current limits and desirable developments in their areas. Theoretical contributions, aimed at advancing the state-of-the-art in the given domain with a clear potential for applications The inclusion of an algorithmic-computational discussion of issues arising on similar valuation problems across different methods. Variety of applications: rarely is it possible within a single volume to consider and analyze different, and possibly competing, alternative optimization techniques applied to well-identified financial valuation problems. Clear definition of the current state-of-the-art in each methodological and applied area to facilitate future research directions.
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled.
Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily di erentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of di erent problems arising in the eld. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software.The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the eld, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization." |
You may like...
Exploring Science International Physics…
Mark Levesley, Penny Johnson
Paperback
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
R4,574
Discovery Miles 45 740
Research Methods In Occupational…
Harvey Checkoway, Neil E. Pearce, …
Hardcover
R1,981
Discovery Miles 19 810
|