![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
Coordination is extremely important in economic, political, and social life. The concept of economic equilibrium is based on the coordination of producers and consumers in buying and selling. This book reviews the topic of coordination from an economic, theoretical standpoint. The aim of this volume is twofold: first, the book contributes to the ongoing research on the economics of coordination; and second, it disseminates results and encourages interest in the topic. The volume contains original research on coordination including general game-theoretic questions, particular coordination issues within specific fields of economics (i.e. industrial organization, international trade, and macroeconomics), and experimental research.
This edited book is dedicated to Professor N. U. Ahmed, a leading scholar and a renowned researcher in optimal control and optimization on the occasion of his retirement from the Department of Electrical Engineering at University of Ottawa in 1999. The contributions of this volume are in the areas of optimal control, non linear optimization and optimization applications. They are mainly the im proved and expanded versions of the papers selected from those presented in two special sessions of two international conferences. The first special session is Optimization Methods, which was organized by K. L. Teo and X. Q. Yang for the International Conference on Optimization and Variational Inequality, the City University of Hong Kong, Hong Kong, 1998. The other one is Optimal Control, which was organized byK. Teo and L. Caccetta for the Dynamic Control Congress, Ottawa, 1999. This volume is divided into three parts: Optimal Control; Optimization Methods; and Applications. The Optimal Control part is concerned with com putational methods, modeling and nonlinear systems. Three computational methods for solving optimal control problems are presented: (i) a regularization method for computing ill-conditioned optimal control problems, (ii) penalty function methods that appropriately handle final state equality constraints, and (iii) a multilevel optimization approach for the numerical solution of opti mal control problems. In the fourth paper, the worst-case optimal regulation involving linear time varying systems is formulated as a minimax optimal con trol problem."
Local search has been applied successfully to a diverse collection of optimization problems. However, results are scattered throughout the literature. This is the first book that presents a large collection of theoretical results in a consistent manner. It provides the reader with a coherent overview of the achievements obtained so far, and serves as a source of inspiration for the development of novel results in the challenging field of local search.
The editors draw on a 3-year project that analyzed a Portuguese area in detail, comparing this study with papers from other regions. Applications include the estimation of technical efficiency in agricultural grazing systems (dairy, beef and mixed) and specifically for dairy farms. The conclusions indicate that it is now necessary to help small dairy farms in order to make them more efficient. These results can be compared with the technical efficiency of a sample of Spanish dairy processing firms presented by Magdalena Kapelko and co-authors.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
Chapters in Game Theory has been written on the occasion of the 65th birthday of Stef Tijs, who can be regarded as the godfather of game theory in the Netherlands. The contributors all are indebted to Stef Tijs, as former Ph.D. students or otherwise. The book contains fourteen chapters on a wide range of subjects. Some of these can be considered surveys while other chapters present new results: most contributions can be positioned somewhere in between these categories. The topics covered include: cooperative stochastic games; noncooperative stochastic games; sequencing games; games arising form linear (semi-) infinite programming problems; network formation, costs and potential games; potentials and consistency in transferable utility games; the nucleolus and equilibrium prices; population uncertainty and equilibrium selection; cost sharing; centrality in social networks; extreme points of the core; equilibrium sets of bimatrix games; game theory and the market; and transfer procedures for nontransferable utility games. Both editors did their Ph.D with Stef Tijs, while he was affiliated with the mathematics department of the University of Nijmegen.
Internet is starting to permeate politics much as it has previously revolutionised education, business or the arts. Thus, there is a growing interest in areas of e-government and, more recently, e-democracy. However, most attempts in this field have just envisioned standard political approaches facilitated by technology, like e-voting or e-debating. Alternatively, we could devise a more transforming strategy based on deploying web based group decision support tools and promote their use for public policy decision making. This book delineates how this approach could be implemented. It addresses foundations, basic methodologies, potential implementation and applications, together with a thorough discussion of the many challenging issues. This innovative text will be of interest to students, researchers and practitioners in the fields of e-government, e-democracy and e-participation and research in decision analysis, negotiation analysis and group decision support.
Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
Experimental Econophysics describes the method of controlled human experiments, which is developed by physicists to study some problems in economics or finance, namely, stylized facts, fluctuation phenomena, herd behavior, contrarian behavior, hedge behavior, cooperation, business cycles, partial information, risk management, and stock prediction. Experimental econophysics together with empirical econophysics are two branches of the field of econophysics. The latter one has been extensively discussed in the existing books, while the former one has been seldom touched. In this book, the author will focus on the branch of experimental econophysics. Empirical econophysics is based on the analysis of data in real markets by using some statistical tools borrowed from traditional statistical physics. Differently, inspired by the role of controlled experiments and system modelling (for computer simulations and/or analytical theory) in developing modern physics, experimental econophysics specially relies on controlled human experiments in the laboratory (producing data for analysis) together with agent-based modelling (for computer simulations and/or analytical theory), with an aim at revealing the general cause-effect relationship between specific parameters and emergent properties of real economic/financial markets. This book covers the basic concepts, experimental methods, modelling approaches, and latest progress in the field of experimental econophysics.
Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students' skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions.
Hybrid Optimization focuses on the application of artificial intelligence and operations research techniques to constraint programming for solving combinatorial optimization problems. This book covers the most relevant topics investigated in the last ten years by leading experts in the field, and speculates about future directions for research. This book includes contributions by experts from different but related areas of research including constraint programming, decision theory, operations research, SAT, artificial intelligence, as well as others. These diverse perspectives are actively combined and contrasted in order to evaluate their relative advantages. This volume presents techniques for hybrid modeling, integrated solving strategies including global constraints, decomposition techniques, use of relaxations, and search strategies including tree search local search and metaheuristics. Various applications of the techniques presented as well as supplementary computational tools are also discussed.
This book covers algorithms and discretization procedures for the solution of nonlinear progamming, semi-infinite optimization and optimal control problems. Among the important features included are the theory of algorithms represented as point-to-set maps, the treatment of min-max problems with and without constraints, the theory of consistent approximation which provides a framework for the solution of semi-infinite optimization, optimal control, and shape optimization problems with very general constraints, using simple algorithms that call standard nonlinear programming algorithms as subroutines, the completeness with which algorithms are analysed, and chapter 5 containing mathematical results needed in optimization from a large assortment of sources. Readers will find of particular interest the exhaustive modern treatment of optimality conditions and algorithms for min-max problems, as well as the newly developed theory of consistent approximations and the treatment of semi-infinite optimization and optimal control problems in this framework. This book presents the first treatment of optimization algorithms for optimal control problems with state-trajectory and control constraints, and fully accounts for all the approximations that one must make in their solution.It is also the first to make use of the concepts of epi-convergence and optimality functions in the construction of consistent approximations to infinite dimensional problems.
This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems."
This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic control problems and Markov decision processes. The algorithms developed represent a valuable contribution to the important field of computational network theory.
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics."
Recently, a great deal of progress has been made in the modeling and understanding of processes with nonlinear dynamics, even when only time series data are available. Modern reconstruction theory deals with creating nonlinear dynamical models from data and is at the heart of this improved understanding. Most of the work has been done by dynamicists, but for the subject to reach maturity, statisticians and signal processing engineers need to provide input both to the theory and to the practice. The book brings together different approaches to nonlinear time series analysis in order to begin a synthesis that will lead to better theory and practice in all the related areas. This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.
The book deals with some of the fundamental issues of risk assessment in grid computing environments. The book describes the development of a hybrid probabilistic and possibilistic model for assessing the success of a computing task in a grid environment
This book contains refereed papers which were presented at the 34th Workshop of the International School of Mathematics "G. Stampacchia," the International Workshop on Optimization and Control with Applications. The book contains 28 papers that are grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. The specific topics covered in the individual chapters include optimal control, unconstrained and constrained optimization, complementarity and variational inequalities, equilibrium problems, semi-definite programs, semi-infinite programs, matrix functions and equations, nonsmooth optimization, generalized convexity and generalized monotinicity, and their applications.
This book is concerned with topological and differential properties of multivalued mappings and marginal functions. Beside this applica- tions to the sensitivity analysis of optimization problems, in particular nonlinear programming problems with perturbations, are studied. The elaborated methods are primarily obtained by theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov. Con- sequently, a significant part of the presented results have never been published in English before. Based on the use of directional derivatives as a key tool in studying nonsmooth functions and multifunctions, these results can be considered as a further development of quasidifferential calculus created by Demyanov and Rubinov. In contrast to other research in this field, especially the recent publica- tion by Bonnans and Shapiro, this book analyses properties of marginal functions associated with optimization problems under quite general con- straints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume.
OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems addresses two increasingly important areas in GA implementation and practice. OmeGA, or the ordering messy genetic algorithm, combines some of the latest in competent GA technology to solve scheduling and other permutation problems. Competent GAs are those designed for principled solutions of hard problems, quickly, reliably, and accurately. Permutation and scheduling problems are difficult combinatorial optimization problems with commercial import across a variety of industries. This book approaches both subjects systematically and clearly. The first part of the book presents the clearest description of messy GAs written to date along with an innovative adaptation of the method to ordering problems. The second part of the book investigates the algorithm on boundedly difficult test functions, showing principled scale up as problems become harder and longer. Finally, the book applies the algorithm to a test function drawn from the literature of scheduling. |
![]() ![]() You may like...
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,558
Discovery Miles 35 580
Automatic Extraction of Man-Made Objects…
Armin Gruen, E.P. Baltsavias, …
Hardcover
R5,815
Discovery Miles 58 150
|