![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition. The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
This undergraduate textbook introduces students of science and engineering to the fascinating field of optimization. It is a unique book that brings together the subfields of mathematical programming, variational calculus, and optimal control, thus giving students an overall view of all aspects of optimization in a single reference. As a primer on optimization, its main goal is to provide a succinct and accessible introduction to linear programming, nonlinear programming, numerical optimization algorithms, variational problems, dynamic programming, and optimal control. Prerequisites have been kept to a minimum, although a basic knowledge of calculus, linear algebra, and differential equations is assumed. There are numerous examples, illustrations, and exercises throughout the text, making it an ideal book for self-study. Applied mathematicians, physicists, engineers, and scientists will all find this introduction to optimization extremely useful.
This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. "" Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. "" Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. "" Part 5 enlightens selected applications as loss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. The book shows that the intertwined progress of theory and practice will remain to be most intriguing and will continue to be the basis of further developments in queueing networks."
When analyzing systems with a large number of parameters, the dimen sion of the original system may present insurmountable difficulties for the analysis. It may then be convenient to reformulate the original system in terms of substantially fewer aggregated variables, or macrovariables. In other words, an original system with an n-dimensional vector of states is reformulated as a system with a vector of dimension much less than n. The aggregated variables are either readily defined and processed, or the aggregated system may be considered as an approximate model for the orig inal system. In the latter case, the operation of the original system can be exhaustively analyzed within the framework of the aggregated model, and one faces the problems of defining the rules for introducing macrovariables, specifying loss of information and accuracy, recovering original variables from aggregates, etc. We consider also in detail the so-called iterative aggregation approach. It constructs an iterative process, at. every step of which a macroproblem is solved that is simpler than the original problem because of its lower dimension. Aggregation weights are then updated, and the procedure passes to the next step. Macrovariables are commonly used in coordinating problems of hierarchical optimization."
Selected papers submitted by participants of the international Conference "Stochastic Analysis and Applied Probability 2010" ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the "Applied Mathematics & Mathematical Physics" research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.
Graph theory is very much tied to the geometric properties of optimization and combinatorial optimization. Moreover, graph theory's geometric properties are at the core of many research interests in operations research and applied mathematics. Its techniques have been used in solving many classical problems including maximum flow problems, independent set problems, and the traveling salesman problem. Graph Theory and Combinatorial Optimization explores the field's classical foundations and its developing theories, ideas and applications to new problems. The book examines the geometric properties of graph theory and its widening uses in combinatorial optimization theory and application. The field's leading researchers have contributed chapters in their areas of expertise.
Leading expert Paul Booth explores the growth in popularity of board games today, and unpacks what it means to read a board game. What does a game communicate? How do games play us? And how do we decide which games to play and which are just wastes of cardboard? With little scholarly research in this still-emerging field, Board Games as Media underscores the importance of board games in the ever-evolving world of media.
This book discusses the main techniques and newest trends to manage and optimize the production and service systems. The book begins by examining the three main levels of decision systems in production: the long term (strategic), the middle term (tactical) and short term (operational). It also considers online management as a new level (a sub level of the short term). As each level encounters specific problems, appropriate approaches to deal with these are introduced and explained. These problems include the line design, the line balancing optimization, the physical layout of the production or service system, the forecasting optimization, the inventory management, the scheduling etc. Metaheuristics for Production Systems then explores logistic optimization from two different perspectives: internal (production management), addressing issues of scheduling, layout and line designs, and external (supply chain management) focusing on transportation optimization, supply chain evaluation, and location of production. The book also looks at NP-hard problems that are common in production management. These complex configurations may mean that optimal solutions may not be reached due to variables, but the authors help provide a good solution for such problems. The effective new results and solutions offered in this book should appeal to researchers, managers, and engineers in the production and service industries.
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs) . As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
Growing transportation costs and tight delivery schedules mean that good located decisions are more crucial than ever in the success or failure of industrial and puplic projects. The development of realistic location models is an essential phase in every locational decision process. Especially when dealing with geometric representations of continuous (planar) location model problems, the goegraphical reality must be incorporated. This text develops the mathematical implications of barriers to the geometrical and analytical characteristics of continuous location problems. Besides their relevance in the application of location theoretic results, location problems with barriers are also very interesting from a mathematical point of view. The nonconvexity of distance measures in the presence of barriers leads to nonconvex optimization problems. Most of the classical methods in continuous location theory rely heaily on the convexity of the objective function and will thus fail in this context. On the other hand, general methods in global optimization capable of treating nonconvex problems ignore the geometric charateristics of the location problems considered. Theoretic as well as algorithmic approaches are utilized to overcome the described difficulties for the solution of location problems with barriers. Depending on the barrier shapes, the underlying distance measure, and type of objective function, different concepts are conceived to handle the nonconvexity of the problem. This book will appeal to those working in operations research and management science and mathematicians interested in optimization theory and its applications.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
In February 2002, the Industrial and Systems Engineering (ISE) De partment at the University of Florida hosted a National Science Founda tion Workshop on Collaboration and Negotiation in Supply Chain Man agement and E Commerce. This workshop focused on characterizing the challenges facing leading edge firms in supply chain management and electronic commerce, and identifying research opportunities for de veloping new technological and decision support capabilities sought by industry. The audience included practitioners in the areas of supply chain management and E Commerce, as well as academic researchers working in these areas. The workshop provided a unique setting that has facilitated ongoing dialog between academic researchers and industry practitioners. This book codifies many of the important themes and issues around which the workshop discussions centered. The editors of this book, all faculty members in the ISE Department at the University of Florida, also served as the workshop's coordinators. In addition to workshop participants, we also invited contributions from leading academics and practitioners who were not able to attend. As a result, the chapters herein represent a collection of research contributions, monographs, and case studies from a variety of disciplines and viewpoints. On the aca demic side alone, chapter authors include faculty members in supply chain and operations management, marketing, industrial engineering, economics, computer science, civil and environmental engineering, and building construction departments.
This textbook presents the basics of game theory both on an undergraduate level and on a more advanced mathematical level. It is the second, revised version of the successful 2008 edition. The book covers most topics of interest in game theory, including cooperative game theory. Part I presents introductions to all these topics on a basic yet formally precise level. It includes chapters on repeated games, social choice theory, and selected topics such as bargaining theory, exchange economies, and matching. Part II goes deeper into noncooperative theory and treats the theory of zerosum games, refinements of Nash equilibrium in strategic as well as extensive form games, and evolutionary games. Part III covers basic concepts in the theory of transferable utility games, such as core and balancedness, Shapley value and variations, and nucleolus. Some mathematical tools on duality and convexity are collected in Part IV. Every chapter in the book contains a problem section. Hints, answers and solutions are included.
Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems.
Alternate Reality Games (ARGs) challenge what players understand as "real." Alternate Reality Games and the Cusp of Digital Gameplay is the first collection to explore and define the possibilities of ARGs. Though prominent examples have existed for more than two decades, only recently have ARGs come to the prominence as a unique and highly visible digital game genre. Adopting many of the same strategies as online video games, ARGs blur the distinction between real and fictional. With ARGs continuing to be an important and blurred space between digital and physical gameplay, this volume offers clear analysis of game design, implementation, and ramifications for game studies. Divided into three distinct sections, the contributions include first hand accounts by leading ARG creators, scholarly analysis of the meaning behind ARGs, and explorations of how ARGs are extending digital tools for analysis. By balancing the voices of designers, players, and researchers, this collection highlights how the Alternate Reality Game genre is transforming the ways we play and interact today.
The book is a collection of contributed papers in honor of Roy Radner. Reflecting Radner's broad range of research interests, the papers cover quite diverse areas, ranging over general equilibrium analysis of the market mechanism, economies undergoing transition, satisficing behavior, markets with asymmetric information, organizational resource allocation and information processing, incentives and implementation, stable sets and the core, stochastic sequential bargaining games, perfect equilibria in a macro growth model, repeated games, and evolutionary games.
The original edition of this book was celebrated for its coverage of the central concepts of practical optimization techniques. This updated edition expands and illuminates the connection between the purely analytical character of an optimization problem, expressed by properties of the necessary conditions, and the behavior of algorithms used to solve a problem. Incorporating modern theoretical insights, this classic text is even more useful.
Practical Goal Programming is intended to allow academics and practitioners to be able to build effective goal programming models, to detail the current state of the art, and to lay the foundation for its future development and continued application to new and varied fields. Suitable as both a text and reference, its nine chapters first provide a brief history, fundamental definitions, and underlying philosophies, and then detail the goal programming variants and define them algebraically. Chapter 3 details the step-by-step formulation of the basic goal programming model, and Chapter 4 explores more advanced modeling issues and highlights some recently proposed extensions. Chapter 5 then details the solution methodologies of goal programming, concentrating on computerized solution by the Excel Solver and LINGO packages for each of the three main variants, and includes a discussion of the viability of the use of specialized goal programming packages. Chapter 6 discusses the linkages between Pareto Efficiency and goal programming. Chapters 3 to 6 are supported by a set of ten exercises, and an Excel spreadsheet giving the basic solution of each example is available at an accompanying website. Chapter 7 details the current state of the art in terms of the integration of goal programming with other techniques, and the text concludes with two case studies which were chosen to demonstrate the application of goal programming in practice and to illustrate the principles developed in Chapters 1 to 7. Chapter 8 details an application in healthcare, and Chapter 9 describes applications in portfolio selection.
This state-of-the art collection of papers analyses various aspects of the theory of externalities and public goods. The contributions employ new analytical techniques like the aggregative game approach, and discuss the philosophical underpinnings of the theory. Furthermore, they highlight a range of topical empirical applications including climate policy and counterterrorism. This contributed volume was written in memory of Richard C. Cornes, a pioneer in the theory of externalities and public goods.
Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering, OperationsResearch, andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously availabl
Nonlinear Optimization is an intriguing area of study where mathematical theory, algorithms and applications converge to calculate the optimal values of continuous functions. Within this subject, Global Optimization aims at finding global optima for difficult problems in which many local optima might exist. This book provides a compelling introduction to global and non-linear optimization providing interdisciplinary readers with a strong background to continue their studies into these and other related fields. The book offers insight in relevant concepts such as "region of attraction" and "Branch-and-Bound" by elaborating small numerical examples and exercises for the reader to follow.
The topology optimization method solves the basic engineering problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design, which is concerned with the optimization of structural topology, shape and material. This edition has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state of the art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also MEMS and materials.
A collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. This welcome reference for many new results and recent methods is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory.
This book introduces an efficient resource management approach for future spectrum sharing systems. The book focuses on providing an optimal resource allocation framework based on carrier aggregation to allocate multiple carriers' resources efficiently among mobile users. Furthermore, it provides an optimal traffic dependent pricing mechanism that could be used by network providers to charge mobile users for the allocated resources. The book provides different resource allocation with carrier aggregation solutions, for different spectrum sharing scenarios, and compares them. The provided solutions consider the diverse quality of experience requirement of multiple applications running on the user's equipment since different applications require different application performance. In addition, the book addresses the resource allocation problem for spectrum sharing systems that require user discrimination when allocating the network resources.
Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications. |
![]() ![]() You may like...
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Advances in Learning Automata and…
Javidan Kazemi Kordestani, Mehdi Razapoor Mirsaleh, …
Hardcover
R4,938
Discovery Miles 49 380
Applications of Artificial Intelligence…
Allam Hamdan, Aboul Ella Hassanien, …
Hardcover
R7,016
Discovery Miles 70 160
Ludic, Co-design and Tools Supporting…
Oscar Mealha, Matthias Rehm, …
Hardcover
R4,376
Discovery Miles 43 760
Blockchain Technology and Innovations in…
Srikanta Patnaik, Tao-Sheng Wang, …
Hardcover
R5,104
Discovery Miles 51 040
Blockchain Technology and Computational…
Shahnawaz Khan, Mohammad Haider, …
Hardcover
R7,211
Discovery Miles 72 110
Data Envelopment Analysis and Effective…
Farhad Hosseinzadeh Lotfi, Seyed Esmaeil Najafi, …
Hardcover
R4,403
Discovery Miles 44 030
ICT for Smart Water Systems…
Andrea Scozzari, Steve Mounce, …
Hardcover
R8,332
Discovery Miles 83 320
Artificial Intelligence and IoT - Smart…
Kalaiselvi Geetha Manoharan, Jawaharlal Arun Nehru, …
Hardcover
R5,605
Discovery Miles 56 050
|