![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida."
Complementarity theory is a new domain in applied mathematics and is concerned with the study of complementarity problems. These problems represent a wide class of mathematical models related to optimization, game theory, economic engineering, mechanics, fluid mechanics, stochastic optimal control etc. The book is dedicated to the study of nonlinear complementarity problems by topological methods. Audience: Mathematicians, engineers, economists, specialists working in operations research and anybody interested in applied mathematics or in mathematical modeling.
Most books about global optimization describe the theory of thealgorithms, whereas a given implementation's quality never dependsexclusively on the theoretical soundness of the algorithms that areimplemented. The literature rarely discusses the tuning of algorithmicparameters, implementation tricks, software architectures, and theembedding of local solvers within global solvers. And yet, there aremany good software implementations out there from which the entirecommunity could learn something. The scope of this book is moving afew steps toward the systematization of the path that goes from theinvention to the implementation and testing of a global optimizationalgorithm.
This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.
Game theory, defined in the broadest sense, is a collection of mathematical models designed for the analysis of strategic aspects of situations of conflict and cooperation in a broad spectrum of fields including economics, politics, biology, engineering, and operations research. This book, besides covering the classical results of game theory, places special emphasis on methods of determining `solutions' of various game models. Generalizations reaching beyond the `convexity paradigm' and leading to nonconvex optimization problems are enhanced and discussed in more detail than in standard texts on this subject. The development is theoretical-mathematical interspersed with elucidating interpretations and examples. Audience: The material in the book is accessible to PhD and graduate students and will also be of interest to researchers. Solid knowledge of standard undergraduate mathematics is required to read the book.
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
Game Theory: Stochastics, Information, Strategies and Cooperation provides a discussion of some relevant topics in game theory. It is composed partially from material compiled by Professor Joachim RosenmA1/4ller when lecturing at IMW, the Institute of Mathematical Economics at the University of Bielefeld. On the other hand, it also contains research topics that are not presented in a typical game theory textbook. Thus, the volume may provide the basis for an advanced course in game theory; simultaneously it may be called a monograph, and, as a third aspect, it also supplies some rather elementary versions of advanced topics of the field. The volume has a non-cooperative and a cooperative part and in both of them the reader is assumed to have some basic knowledge in game theory, for instance, concerning the normal form (bimatrix games, Nash equilibria of the mixed extension, backwards induction in games with perfect information) on one hand and the coalitional function (simple games, convex games, superadditive games, the core, the Shapley volume) on the other hand. Some emphasis is laid on the probabilistic background; however, the author treats stochastic games using the language of probability in order to consider simple models in which measure theory can be omitted.
This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.
Cooperative game theory is a booming research area with many new developments in the last few years. So, our main purpose when prep- ing the second edition was to incorporate as much of these new dev- opments as possible without changing the structure of the book. First, this o?ered us the opportunity to enhance and expand the treatment of traditional cooperative games, called here crisp games, and, especially, that of multi-choice games, in the idea to make the three parts of the monograph more balanced. Second, we have used the opportunity of a secondeditiontoupdateandenlargethelistofreferencesregardingthe threemodels of cooperative games. Finally, we have bene?ted fromthis opportunity by removing typos and a few less important results from the ?rst edition of the book, and by slightly polishing the English style and the punctuation, for the sake of consistency along the monograph. The main changes are: (1) Chapter 3 contains an additional section, Section 3. 3, on the - erage lexicographic value, which is a recent one-point solution concept de?ned on the class of balanced crisp games. (2) Chapter 4 is new. It o?ers a brief overview on solution c- cepts for crisp games from the point of view of egalitarian criteria, and presents in Section 4. 2 a recent set-valued solution concept based on egalitarian considerations, namely the equal split-o? set. (3)Chapter5isbasicallyanenlargedversionofChapter4ofthe?rst edition because Section 5. 4 dealing with the relation between convex games and clan games with crisp coalitions is new.
Algorithmic discrete mathematics plays a key role in the development of information and communication technologies, and methods that arise in computer science, mathematics and operations research in particular in algorithms, computational complexity, distributed computing and optimization are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 a four-year program of multidisciplinary research on this subject. In this book they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics."
Most financial and investment decisions are based on considerations of possible future changes and require forecasts on the evolution of the financial world. Time series and processes are the natural tools for describing the dynamic behavior of financial data, leading to the required forecasts. This book presents a survey of the empirical properties of financial time series, their descriptions by means of mathematical processes, and some implications for important financial applications used in many areas like risk evaluation, option pricing or portfolio construction. The statistical tools used to extract information from raw data are introduced. Extensive multiscale empirical statistics provide a solid benchmark of stylized facts (heteroskedasticity, long memory, fat-tails, leverage ), in order to assess various mathematical structures that can capture the observed regularities. The author introduces a broad range of processes and evaluates them systematically against the benchmark, summarizing the successes and limitations of these models from an empirical point of view. The outcome is that only multiscale ARCH processes with long memory, discrete multiplicative structures and non-normal innovations are able to capture correctly the empirical properties. In particular, only a discrete time series framework allows to capture all the stylized facts in a process, whereas the stochastic calculus used in the continuum limit is too constraining. The present volume offers various applications and extensions for this class of processes including high-frequency volatility estimators, market risk evaluation, covariance estimation and multivariate extensions of the processes. The book discusses many practical implications and is addressed to practitioners and quants in the financial industry, as well as to academics, including graduate (Master or PhD level) students. The prerequisites are basic statistics and some elementary financial mathematics."
In this book applications of cooperative game theory that arise from combinatorial optimization problems are described. It is well known that the mathematical modeling of various real-world decision-making situations gives rise to combinatorial optimization problems. For situations where more than one decision-maker is involved classical combinatorial optimization theory does not suffice and it is here that cooperative game theory can make an important contribution. If a group of decision-makers decide to undertake a project together in order to increase the total revenue or decrease the total costs, they face two problems. The first one is how to execute the project in an optimal way so as to increase revenue. The second one is how to divide the revenue attained among the participants. It is with this second problem that cooperative game theory can help. The solution concepts from cooperative game theory can be applied to arrive at revenue allocation schemes. In this book the type of problems described above are examined. Although the choice of topics is application-driven, it also discusses theoretical questions that arise from the situations that are studied. For all the games described attention will be paid to the appropriateness of several game-theoretic solution concepts in the particular contexts that are considered. The computation complexity of the game-theoretic solution concepts in the situation at hand will also be considered.
Brian Clegg was always fascinated by Isaac Asimov's classic Foundation series of books, in which the future is predicted using sophisticated mathematical modelling of human psychology and behaviour. Only much later did he realise that Asimov's 'psychohistory' had a real-world equivalent: game theory. Originating in the study of probabilistic gambling games that depend on a random source - the throw of a dice or the toss of a coin - game theory soon came to be applied to human interactions: essentially, what was the best strategy to win, whatever you were doing? Its mathematical techniques have been applied, with varying degrees of wisdom, to fields such as economics, evolution, and questions such as how to win a nuclear war. Clegg delves into game theory's colourful history and significant findings, and shows what we can all learn from this oft-misunderstood field of study.
The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of "Implicit Functions and Solution Mappings "presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
When I wrote the book Quantitative Sociodynamics, it was an early attempt to make methods from statistical physics and complex systems theory fruitful for the modeling and understanding of social phenomena. Unfortunately, the ?rst edition appeared at a quite prohibitive price. This was one reason to make these chapters available again by a new edition. The other reason is that, in the meantime, many of the methods discussed in this book are more and more used in a variety of different ?elds. Among the ideas worked out in this book are: 1 * a statistical theory of binary social interactions, * a mathematical formulation of social ?eld theory, which is the basis of social 2 force models, * a microscopic foundation of evolutionary game theory, based on what is known today as 'proportional imitation rule', a stochastic treatment of interactions in evolutionary game theory, and a model for the self-organization of behavioral 3 conventions in a coordination game. It, therefore, appeared reasonable to make this book available again, but at a more affordable price. To keep its original character, the translation of this book, which 1 D. Helbing, Interrelations between stochastic equations for systems with pair interactions. Ph- icaA 181, 29-52 (1992); D. Helbing, Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models. PhysicaA 196, 546-573 (1993). 2 D. Helbing, Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of beh- ioral models. PhysicaA 196, 546-573 (1993); D.
This volume contains 13 selected keynote papers presented at the Fourth International Conference on Numerical Analysis and Optimization. Held every three years at Sultan Qaboos University in Muscat, Oman, this conference highlights novel and advanced applications of recent research in numerical analysis and optimization. Each peer-reviewed chapter featured in this book reports on developments in key fields, such as numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, derivative-free optimization methods, programming models, and challenging applications that frequently arise in statistics, econometrics, finance, physics, medicine, biology, engineering and industry. Any graduate student or researched wishing to know the latest research in the field will be interested in this volume. This book is dedicated to the late Professors Mike JD Powell and Roger Fletcher, who were the pioneers and leading figures in the mathematics of nonlinear optimization.
"Decision Systems and Non-stochastic Randomness" is the first systematic presentation and mathematical formalization (including existence theorems) of the statistical regularities of non-stochastic randomness. The results presented in this book extend the capabilities of probability theory by providing mathematical techniques that allow for the description of uncertain events that do not fit standard stochastic models. The book demonstrates how non-stochastic regularities can be incorporated into decision theory and information theory, offering an alternative to the subjective probability approach to uncertainty and the unified approach to the measurement of information. This book is intended for statisticians, mathematicians, engineers, economists or other researchers interested in non-stochastic modeling and decision theory.
Coordination is extremely important in economic, political, and social life. The concept of economic equilibrium is based on the coordination of producers and consumers in buying and selling. This book reviews the topic of coordination from an economic, theoretical standpoint. The aim of this volume is twofold: first, the book contributes to the ongoing research on the economics of coordination; and second, it disseminates results and encourages interest in the topic. The volume contains original research on coordination including general game-theoretic questions, particular coordination issues within specific fields of economics (i.e. industrial organization, international trade, and macroeconomics), and experimental research.
This edited book is dedicated to Professor N. U. Ahmed, a leading scholar and a renowned researcher in optimal control and optimization on the occasion of his retirement from the Department of Electrical Engineering at University of Ottawa in 1999. The contributions of this volume are in the areas of optimal control, non linear optimization and optimization applications. They are mainly the im proved and expanded versions of the papers selected from those presented in two special sessions of two international conferences. The first special session is Optimization Methods, which was organized by K. L. Teo and X. Q. Yang for the International Conference on Optimization and Variational Inequality, the City University of Hong Kong, Hong Kong, 1998. The other one is Optimal Control, which was organized byK. Teo and L. Caccetta for the Dynamic Control Congress, Ottawa, 1999. This volume is divided into three parts: Optimal Control; Optimization Methods; and Applications. The Optimal Control part is concerned with com putational methods, modeling and nonlinear systems. Three computational methods for solving optimal control problems are presented: (i) a regularization method for computing ill-conditioned optimal control problems, (ii) penalty function methods that appropriately handle final state equality constraints, and (iii) a multilevel optimization approach for the numerical solution of opti mal control problems. In the fourth paper, the worst-case optimal regulation involving linear time varying systems is formulated as a minimax optimal con trol problem."
Internet is starting to permeate politics much as it has previously revolutionised education, business or the arts. Thus, there is a growing interest in areas of e-government and, more recently, e-democracy. However, most attempts in this field have just envisioned standard political approaches facilitated by technology, like e-voting or e-debating. Alternatively, we could devise a more transforming strategy based on deploying web based group decision support tools and promote their use for public policy decision making. This book delineates how this approach could be implemented. It addresses foundations, basic methodologies, potential implementation and applications, together with a thorough discussion of the many challenging issues. This innovative text will be of interest to students, researchers and practitioners in the fields of e-government, e-democracy and e-participation and research in decision analysis, negotiation analysis and group decision support.
Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.
This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2014, held at Warsaw, Poland, September 7-10, 2014. The book presents recent advances in computational optimization. The volume includes important real problems like parameter settings for controlling processes in bioreactor and other processes, resource constrained project scheduling, infection distribution, molecule distance geometry, quantum computing, real-time management and optimal control, bin packing, medical image processing, localization the abrupt atmospheric contamination source and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. |
You may like...
The Oxford Handbook of the Economics of…
Yann Bramoulle, Andrea Galeotti, …
Hardcover
R5,455
Discovery Miles 54 550
The History and Allure of Interactive…
Mark Kretzschmar, Sara Raffel
Hardcover
R3,171
Discovery Miles 31 710
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Game Theory - Applications in Logistics…
Danijela Tuljak-Suban
Hardcover
R3,060
Discovery Miles 30 600
|