![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
OndrejMajer, Ahti-VeikkoPietarinen, andTeroTulenheimo 1 Games and logic in philosophy Recent years have witnessed a growing interest in the unifying methodo- gies over what have been perceived as pretty disparate logical 'systems', or else merely an assortment of formal and mathematical 'approaches' to phi- sophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of 'logical pluralism' or 'methodological diversity'. These phrases appear to re ect the everyday chaos of our academic pursuits rather than any genuine attempt to clarify the general principles underlying the miscellaneous ways in which logic appears to us. But the situation is changing. Unity among plurality is emerging in c- temporary studies in logical philosophy and neighbouring disciplines. This is a necessary follow-up to the intensive research into the intricacies of logical systems and methodologies performed over the recent years. The present book suggests one such peculiar but very unrestrained meth- ological perspective over the eld of logic and its applications in mathematics, language or computation: games. An allegory for opposition, cooperation and coordination, games are also concrete objects of formal study.
This book treats extensive form game theory in full generality. It provides a framework that does not rely on any finiteness assumptions at all, yet covers the finite case. The presentation starts by identifying the appropriate concept of a game tree. This concept represents a synthesis of earlier approaches, including the graph-theoretical and the decision-theoretical ones. It then provides a general model of sequential, interpersonal decision making, called extensive decision problems. Extensive forms are a special case thereof, which is such that all strategy profiles induce outcomes and do so uniquely. Requiring the existence of immediate predecessors yields discrete extensive forms, which are still general enough to cover almost all applications. The treatment culminates in a characterization of the topologies on the plays of the game tree that admit equilibrium analysis.
This book introduces an efficient resource management approach for future spectrum sharing systems. The book focuses on providing an optimal resource allocation framework based on carrier aggregation to allocate multiple carriers' resources efficiently among mobile users. Furthermore, it provides an optimal traffic dependent pricing mechanism that could be used by network providers to charge mobile users for the allocated resources. The book provides different resource allocation with carrier aggregation solutions, for different spectrum sharing scenarios, and compares them. The provided solutions consider the diverse quality of experience requirement of multiple applications running on the user's equipment since different applications require different application performance. In addition, the book addresses the resource allocation problem for spectrum sharing systems that require user discrimination when allocating the network resources.
This book introduces several topics related to linear model theory: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. The second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subject and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure. He is the author of numerous technical articles and several books and he is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. Also Available: Christensen, Ronald. Plane Answers to Complex Questions: The Theory of Linear Models, Second Edition (1996). New York: Springer-Verlag New York, Inc. Christensen, Ronald. Log-Linear Models and Logistic Regression, Second Edition (1997). New York: Springer-Verlag New York, Inc.
Econometric theory, as presented in textbooks and the econometric literature generally, is a somewhat disparate collection of findings. Its essential nature is to be a set of demonstrated results that increase over time, each logically based on a specific set of axioms or assumptions, yet at every moment, rather than a finished work, these inevitably form an incomplete body of knowledge. The practice of econometric theory consists of selecting from, applying, and evaluating this literature, so as to test its applicability and range. The creation, development, and use of computer software has led applied economic research into a new age. This book describes the history of econometric computation from 1950 to the present day, based upon an interactive survey involving the collaboration of the many econometricians who have designed and developed this software. It identifies each of the econometric software packages that are made available to and used by economists and econometricians worldwide.
Arguably, many industrial optimization problems are of the
multiobjective type. The present work, after providing a survey of
the state of the art in multiobjective optimization, gives new
insight into this important mathematical field by consequently
taking up the viewpoint of differential geometry. This approach,
unprecedented in the literature, very naturally results in a
generalized homotopy method for multiobjective optimization which
is theoretically well-founded and numerically efficient. The power
of the new method is demonstrated by solving two real-life problems
of industrial optimization.
This book focuses on metaheuristic methods and its applications to real-world problems in Engineering. The first part describes some key metaheuristic methods, such as Bat Algorithms, Particle Swarm Optimization, Differential Evolution, and Particle Collision Algorithms. Improved versions of these methods and strategies for parameter tuning are also presented, both of which are essential for the practical use of these important computational tools. The second part then applies metaheuristics to problems, mainly in Civil, Mechanical, Chemical, Electrical, and Nuclear Engineering. Other methods, such as the Flower Pollination Algorithm, Symbiotic Organisms Search, Cross-Entropy Algorithm, Artificial Bee Colonies, Population-Based Incremental Learning, Cuckoo Search, and Genetic Algorithms, are also presented. The book is rounded out by recently developed strategies, or hybrid improved versions of existing methods, such as the Lightning Optimization Algorithm, Differential Evolution with Particle Collisions, and Ant Colony Optimization with Dispersion - state-of-the-art approaches for the application of computational intelligence to engineering problems. The wide variety of methods and applications, as well as the original results to problems of practical engineering interest, represent the primary differentiation and distinctive quality of this book. Furthermore, it gathers contributions by authors from four countries - some of which are the original proponents of the methods presented - and 18 research centers around the globe.
Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.
This book opens the door to multiobjective optimization for students in fields such as engineering, management, economics and applied mathematics. It offers a comprehensive introduction to multiobjective optimization, with a primary emphasis on multiobjective linear programming and multiobjective integer/mixed integer programming. A didactic book, it is mainly intended for undergraduate and graduate students, but can also be useful for researchers and practitioners. Further, it is accompanied by an interactive software package - developed by the authors for Windows platforms - which can be used for teaching and decision-making support purposes in multiobjective linear programming problems. Thus, besides the textbook's coverage of the essential concepts, theory and methods, complemented with illustrative examples and exercises, the computational tool enables students to experiment and enhance their technical skills, as well as to capture the essential characteristics of real-world problems.
This book gathers selected contributions by top Portuguese and international researchers in the field of Operations Research, presented at the 19th Congress of APDIO (Portuguese Association of Operational Research). The papers address a broad range of complex real-world problems, which are approached using recent theoretical techniques. Of particular interest are the applications of e.g. linear, nonlinear and mixed-integer programming, multiobjective optimization, metaheuristics and hybrid heuristics, multicriteria decision analysis, data envelopment analysis, clustering techniques and decision support systems, in such varied contexts as: supply chain management, scheduling problems, production management, logistics, energy, finance and healthcare. This conference, organized by APDIO and held in Aveiro, Portugal in September 2018, offered an ideal opportunity to discuss the latest developments in this field and to build new bridges between academic researchers and practitioners. Summarizing the outcomes, this book offers a valuable tool for all researchers, students and practitioners who wish to learn about the latest trends in this field.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference "Geometry and Symmetry" in Veszprem, Hungary from 29 June to 3 July 2015. The conference was dedicated to Karoly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
This book is a collection of selected papers presented at the Annual Meeting of the European Academy of Management and Business Economics (AEDEM), held at the Faculty of Economics and Business of the University of Barcelona, 05 - 07 June, 2012. This edition of the conference has been presented with the slogan "Creating new opportunities in an uncertain environment". There are different ways for assessing uncertainty in management but this book mainly focused on soft computing theories and their role in assessing uncertainty in a complex world. The present book gives a comprehensive overview of general management topics and discusses some of the most recent developments in all the areas of business and management including management, marketing, business statistics, innovation and technology, finance, sports and tourism. This book might be of great interest for anyone working in the area of management and business economics and might be especially useful for scientists and graduate students doing research in these fields.
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
This timely book deals with a current topic, i.e. the applications of metaheuristic algorithms, with a primary focus on optimization problems in civil engineering. The first chapter offers a concise overview of different kinds of metaheuristic algorithms, explaining their advantages in solving complex engineering problems that cannot be effectively tackled by traditional methods, and citing the most important works for further reading. The remaining chapters report on advanced studies on the applications of certain metaheuristic algorithms to specific engineering problems. Genetic algorithm, bat algorithm, cuckoo search, harmony search and simulated annealing are just some of the methods presented and discussed step by step in real-application contexts, in which they are often used in combination with each other. Thanks to its synthetic yet meticulous and practice-oriented approach, the book is a perfect guide for graduate students, researchers and professionals willing to applying metaheuristic algorithms in civil engineering and other related engineering fields, such as mechanical, transport and geotechnical engineering. It is also a valuable aid for both lectures and advanced engineering students.
This book provides a full-scale presentation of all methods and techniques available for the solution of the Knapsack problem. This most basic combinatorial optimization problem appears explicitly or as a subproblem in a wide range of optimization models with backgrounds such diverse as cutting and packing, finance, logistics or general integer programming. This monograph spans the range from a comprehensive introduction of classical algorithmic methods to the unified presentation of the most recent and advanced results in this area many of them originating from the authors. The chapters dealing with particular versions and extensions of the Knapsack problem are self-contained to a high degree and provide a valuable source of reference for researchers. Due to its simple structure, the Knapsack problem is an ideal model for introducing solution techniques to students of computer science, mathematics and economics. The first three chapters give an in-depth treatment of several basic techniques, making the book also suitable as underlying literature for courses in combinatorial optimization and approximation.
Supply Chain Optimization captures the latest results in a segment of current research activity in supply chain management. This research area focuses on applying optimization techniques to supply chain management problems. The research papers that make up the volume provide a snapshot of state-of-the-art optimization methods within the field. This book presents rigorous modelling approaches for supply chain operations problems with a goal of improving supply chain performance (or the performance of some segment thereof). It contains high-quality works from leading researchers in the field whose expertise fits within this scope. The book provides a diverse blend of research topics and novel modelling and solution approaches for difficult classes of supply chain operations, planning, and design problems.
This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean-variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuing advanced research and/or engaged in practical issues in the rapidly evolving field of portfolio optimization.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
This volume explores the emerging and current, cutting-edge theories and methods of modeling, optimization, dynamics and bio economy. It provides an overview of the main issues, results and open questions in these fields as well as covers applications to biology, economy, energy, industry, physics, psychology and finance. The majority of the contributed papers for this volume come from the participants of the International Conference on Modeling, Optimization and Dynamics (ICMOD 2010), a satellite conference of EURO XXIV Lisbon 2010, which took place at Faculty of Sciences of University of Porto, Portugal and from the Berkeley Bio economy Conference 2012, at the University of California, Berkeley, USA.
The concepts and techniques presented in this volume originated from the fields of dynamics, statistics, control theory, computer science and informatics, and are applied to novel and innovative real-world applications. Over the past few decades, the use of dynamic systems, control theory, computing, data mining, machine learning and simulation has gained the attention of numerous researchers from all over the world. Admirable scientific projects using both model-free and model-based methods coevolved at today's research centers and are introduced in conferences around the world, yielding new scientific advances and helping to solve important real-world problems. One important area of progress is the bioeconomy, where advances in the life sciences are used to produce new products in a sustainable and clean manner. In this book, scientists from all over the world share their latest insights and important findings in the field. The majority of the contributed papers for this volume were written by participants of the 3rd International Conference on Dynamics, Games and Science, DGSIII, held at the University of Porto in February 2014, and at the Berkeley Bioeconomy Conference at the University of California at Berkeley in March 2014. The aim of the project of this book "Modeling, Dynamics, Optimization and Bioeconomics II" follows the same aim as its companion piece, "Modeling, Dynamics, Optimization and Bioeconomics I," namely, the exploration of emerging and cutting-edge theories and methods for modeling, optimization, dynamics and bioeconomy.
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents diverse applications of nature-inspired optimization algorithms. The sixth part contains papers describing new optimization algorithms. The seventh part contains papers describing applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. Finally, the eighth part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques. |
You may like...
Configured by Consumption - How…
Booi H. Kam, Peter J. Rimmer
Hardcover
R2,853
Discovery Miles 28 530
Fundamentals of Genetic Epidemiology
Muin J. Khoury, Terri H. Beaty, …
Hardcover
R2,274
Discovery Miles 22 740
Pesticides in Household, Structural and…
Chris Peterson, Daniel Stout
Hardcover
R2,614
Discovery Miles 26 140
The COVID-19 Disruption and the Global…
Vincenzo Atella, Pasquale Lucio Scandizzo
Paperback
R2,494
Discovery Miles 24 940
|