![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
This book reports on advanced concepts in fuzzy graph theory, showing a set of tools that can be successfully applied to understanding and modeling illegal human trafficking. Building on the previous book on fuzzy graph by the same authors, which set the fundamentals for readers to understand this developing field of research, this second book gives a special emphasis to applications of the theory. For this, authors introduce new concepts, such as intuitionistic fuzzy graphs, the concept of independence and domination in fuzzy graphs, as well as directed fuzzy networks, incidence graphs and many more.
This book presents simple design paradigms related to lightweight design, that are derived from an in-depth and theoretically sound analysis based on Pareto theory. It uses numerous examples, including torsion and inflated tubes, to fully explain the theories discussed. Lightweight Construction Principles begins by defining terms in relation to engineering design and optimal design of complex mechanical systems. It then discusses the analytical derivation of the Pareto-optimal set, before applying analytical formulae to optimal design of bent beams. The book moves through numerous case studies of different beam and tube construction including beams subject to bending, thin walled tubes under torsion and truss structures. This book will be of interest to researchers and graduate students in the field of structural optimisation and multi-objective optimization, as well as to practitioners such as design engineers.
"Networks of Echoes: Imitation, Innovation and Invisible Leaders" is a mathematically rigorous and data rich book on a fascinating area of the science and engineering of social webs. There are hundreds of complex network phenomena whose statistical properties are described by inverse power laws. The phenomena of interest are not arcane events that we encounter only fleetingly, but are events that dominate our lives. We examine how this intermittent statistical behavior intertwines itself with what appears to be the organized activity of social groups. The book is structured as answers to a sequence of questions such as: How are decisions reached in elections and boardrooms? How is the stability of a society undermined by zealots and committed minorities and how is that stability re-established? Can we learn to answer such questions about human behavior by studying the way flocks of birds retain their formation when eluding a predator? These questions and others are answered using a generic model of a complex dynamic network one whose global behavior is determined by a symmetric interaction among individuals based on social imitation. The complexity of the network is manifest in time series resulting from self-organized critical dynamics that have divergent first and second moments, are non-stationary, non-ergodic and non-Poisson. How phase transitions in the network dynamics influence such activity as decision making is a fascinating story and provides a context for introducing many of the mathematical ideas necessary for understanding complex networks in general. The decision making model (DMM) is selected to emphasize that there are features of complex webs that supersede specific mechanisms and need to be understood from a general perspective. This insightful overview of recent tools and their uses may serve as an introduction and curriculum guide in related courses."
This contributed volume discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-convex sub-superlinear Schroedinger equation, Schroedinger equations in nonlinear optics, exponentially convex functions, optimal lot size under the occurrence of imperfect quality items, generalized equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium points in the restricted three-body problem, optimization models for networks of organ transplants, network curvature measures, error analysis through energy minimization and stability problems, Ekeland variational principles in 2-local Branciari metric spaces, frictional dynamic problems, norm estimates for composite operators, operator factorization and solution of second-order nonlinear difference equations, degenerate Kirchhoff-type inclusion problems, and more.
This book provides several inventory models for making the right decision in inventory management under different environments. Basically, the optimal ordering policies are determined for situations with and without shortages in production-inventory systems. The chapters in the book include various features of inventory modeling i.e., inflation, deterioration, supply chain, learning, credit financing, carbon emission policy, stock-dependent demand, among others. The book is a useful resource for academicians, researchers, students, practitioners, and managers who can be benefited with the policies provided in the chapters of the book.
Very little has been published on optimization of pharmaceutical portfolios. Moreover, most of published literature is coming from the commercial side, where probability of technical success (PoS) is treated as fixed, and not as a consequence of development strategy or design. In this book there is a strong focus on impact of study design on PoS and ultimately on the value of portfolio. Design options that are discussed in different chapters are dose-selection strategies, adaptive design and enrichment. Some development strategies that are discussed are indication sequencing, optimal number of programs and optimal decision criteria. This book includes chapters written by authors with very broad backgrounds including financial, clinical, statistical, decision sciences, commercial and regulatory. Many authors have long held executive positions and have been involved with decision making at a product or at a portfolio level. As such, it is expected that this book will attract a very broad audience, including decision makers in pharmaceutical R&D, commercial and financial departments. The intended audience also includes portfolio planners and managers, statisticians, decision scientists and clinicians. Early chapters describe approaches to portfolio optimization from big Pharma and Venture Capital standpoints. They have stronger focus on finances and processes. Later chapters present selected statistical and decision analysis methods for optimizing drug development programs and portfolios. Some methodological chapters are technical; however, with a few exceptions they require a relatively basic knowledge of statistics by a reader.
This book provides an analysis of strategic behavior in international crises. Various aspects of crisis decision and interaction, such as initiation, misperception, deception, learning, and termination, are studied by means of a game model that incorporates psychological variables. This integrative approach is designed to narrow the gap between psychological and game-theoretical studies of crisis, which are generally considered to be incompatible. The utility of the approach is demonstrated by means of an in-depth case study of the 1967 Middle East crisis. This study will be of interest to scholars in political science and international relations and political science, crisis theory, and game theory.
Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB(r) programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and referencefor graduate and advanced undergraduatestudents, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance."
Maximizing reader insights into the interactions between game theory, excessive crowding and safety and security elements, this book establishes a new research angle by illustrating linkages between different research approaches and through laying the foundations for subsequent analysis. Congestion (excessive crowding) is defined in this work as all kinds of flows; e.g., road/sea/air traffic, people, data, information, water, electricity, and organisms. Analysing systems where congestion occurs - which may be in parallel, series, interlinked, or interdependent, with flows one way or both ways - this book puts forward new congestion models, breaking new ground by introducing game theory and safety/security into proceedings. Addressing the multiple actors who may hold different concerns regarding system reliability; e.g. one or several terrorists, a government, various local or regional government agencies, or others with stakes for or against system reliability, this book describes how governments and authorities may have the tools to handle congestion, but that these tools need to be improved whilst additionally ensuring safety and security against various threats. This game-theoretic analysis sets this book apart from the current congestion literature and ensures that the book will be of use to postgraduates, researchers, 3rd/4th-year undergraduates, policy makers, and practitioners.
This book provides an enduring response to modern economic problems and the consequent crises, dealing with the economic modelling of nations and the forecasting of economic growth. The main arguments embodied constitute the creation of jobs and the restoration of economic growth, using the implicit acceptance of analysis on differential models and neutral systems for controlling the wealth of nations.
This book is about optimization techniques and is subdivided into two parts. In the first part a wide overview on optimization theory is presented. Optimization is presented as being composed of five topics, namely: design of experiment, response surface modeling, deterministic optimization, stochastic optimization, and robust engineering design. Each chapter, after presenting the main techniques for each part, draws application oriented conclusions including didactic examples. In the second part some applications are presented to guide the reader through the process of setting up a few optimization exercises, analyzing critically the choices which are made step by step, and showing how the different topics that constitute the optimization theory can be used jointly in an optimization process. The applications which are presented are mainly in the field of thermodynamics and fluid dynamics due to the author's background.
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.
This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector optimization and multi-criteria decision-making, mathematical finance and economics as well as [set-valued] variational analysis.
This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids. It describes the design of dynamic methods for single-sided and double-sided auction games and presents a number of simulation cases verifying the performances of the proposed algorithms in terms of efficiency, convergence and computational complexity. Further, it explores the performances of certain auction mechanisms in a hierarchical structure and with large-scale agents, as well as the auction mechanisms for the efficient allocation of multi-type resources. Lastly, it generalizes the main and demonstrates their application in smart grids. This book is a valuable resource for researchers, engineers, and graduate students in the fields of optimization, game theory, auction mechanisms and smart grids interested in designing dynamic auction mechanisms to implement optimal allocation of divisible resources, especially electricity and other types of energy in smart grids.
This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory. Many necessary definitions and fundamental results are provided, with the formal mathematical requirements limited to a minimum, while the focus is kept firmly on continuous problems. The book offers a valuable resource for students, researchers and practitioners. It is suitable for university courses on optimization and for self-study.
Our everyday lives are practically unthinkable without optimization. We constantly try to minimize our effort and to maximize the reward or progress achieved. Many real-world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume presents a comprehensive collection of extended contributions from the 2017 Workshop on Computational Optimization. Presenting recent advances in computational optimization, it addresses important concrete applications, e.g. the modeling of physical processes, wildfire modeling, modeling processes in chemical engineering, workforce planning, wireless access network topology, parameter settings for controlling various processes, berth allocation, identification of homogeneous domains, and quantum computing. The book shows how to develop algorithms for them based on new intelligent methods like evolutionary computations, ant colony optimization, constrain programming and others.
This book presents the works and research findings of physicists, economists, mathematicians, statisticians, and financial engineers who have undertaken data-driven modelling of market dynamics and other empirical studies in the field of Econophysics. During recent decades, the financial market landscape has changed dramatically with the deregulation of markets and the growing complexity of products. The ever-increasing speed and decreasing costs of computational power and networks have led to the emergence of huge databases. The availability of these data should permit the development of models that are better founded empirically, and econophysicists have accordingly been advocating that one should rely primarily on the empirical observations in order to construct models and validate them. The recent turmoil in financial markets and the 2008 crash appear to offer a strong rationale for new models and approaches. The Econophysics community accordingly has an important future role to play in market modelling. The Econophys-Kolkata VIII conference proceedings are devoted to the presentation of many such modelling efforts and address recent developments. A number of leading researchers from across the globe report on their recent work, comment on the latest issues, and review the contemporary literature.
This book on constrained optimization is novel in that it fuses these themes: * use examples to introduce general ideas; * engage the student in spreadsheet computation; * survey the uses of constrained optimization;. * investigate game theory and nonlinear optimization, * link the subject to economic reasoning, and * present the requisite mathematics. Blending these themes makes constrained optimization more accessible and more valuable. It stimulates the student's interest, quickens the learning process, reveals connections to several academic and professional fields, and deepens the student's grasp of the relevant mathematics. The book is designed for use in courses that focus on the applications of constrained optimization, in courses that emphasize the theory, and in courses that link the subject to economics.
This book addresses the uncertainties of wind power modeled as interval numbers and assesses the physical modeling and methods for interval power flow, interval economic dispatch and interval robust economic dispatch. In particular, the optimization models are set up to address these topics and the state-of-the-art methods are employed to efficiently solve the proposed models. Several standard IEEE test systems as well as real-world large-scale Polish power systems have been tested to verify the effectiveness of the proposed models and methods. These methods can be further applied to other research fields that are involved with uncertainty.
This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.
This unified volume is a collection of invited chapters presenting recent developments in the field of data analysis, with applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. The book is a useful reference for graduate students, researchers, and practitioners in statistics, mathematics, engineering, economics, social science, bioengineering, and bioscience.
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovi, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational algorithms, and multidisciplinary applications. Special features of this volume: - Presents results and approximation methods in various computational settings including: polynomial and orthogonal systems, analytic functions, and differential equations. - Provides a historical overview of approximation theory and many of its subdisciplines; - Contains new results from diverse areas of research spanning mathematics, engineering, and the computational sciences. "Approximation and Computation" is intended for mathematicians and researchers focusing on approximation theory and numerical analysis, but can also be a valuable resource to students and researchers in the computational and applied sciences." |
![]() ![]() You may like...
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R6,736
Discovery Miles 67 360
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
The History and Allure of Interactive…
Mark Kretzschmar, Sara Raffel
Hardcover
R3,197
Discovery Miles 31 970
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,780
Discovery Miles 57 800
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,905
Discovery Miles 89 050
Linear Integer Programming - Theory…
Elias Munapo, Santosh Kumar
Hardcover
R4,011
Discovery Miles 40 110
|