![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
This book discusses recent developments in the vast domain of optimization. Featuring papers presented at the 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA 2016), held at the Heritage Institute of Technology, Kolkata, on 24-26 December 2016, it opens new avenues of research in all topics related to optimization, such as linear and nonlinear optimization; combinatorial-, stochastic-, dynamic-, fuzzy-, and uncertain optimization; optimal control theory; as well as multi-objective, evolutionary and convex optimization and their applications in intelligent information and technology, systems science, knowledge management, information and communication, supply chain and inventory control, scheduling, networks, transportation and logistics and finance. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 18-20, 2010. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.
This monograph studies multi-member households or, more generally, socio-economic groups from a purely theoretical perspective and within a general equilibrium framework, in contrast to a sizeable empirical literature. The approach is based on the belief that households, their composition, decisions and behavior within a competitive market economy deserve thorough examination. The authors set out to link the formation, composition, decision-making, and stability of households. They develop general equilibrium models of pure exchange economies in which households can have several, typically heterogeneous members and act as collective decision-making units on the one hand and as competitive market participants on the other hand. Moreover, the more advanced models combine traditional exchange (markets for commodities) and matching (markets for people or partners) and develop implications for welfare, social structures, and economic policy. In the field of family economics, Hans Haller and Hans Gersbach have pioneered a 'market' approach that applies the tools of general equilibrium theory to the analysis of household behavior. This very interesting book presents an overview of their methods and results. This is an inspiring work. Pierre-Andre Chiappori, Columbia University, USA The sophisticated, insightful and challenging analysis presented in this book extends the theory of the multi-person household along an important but relatively neglected dimension, that of general equilibrium theory. It also challenges GE theorists themselves to follow Paul Samuelson in taking seriously the real attributes of that fundamental building block, the household, as a social group whose decisions may not satisfy the standard axioms of individual choice. This synthesis and extension of their earlier work by Gersbach and Haller will prove to be a seminal contribution in its field. Ray Rees, LMU Munich, Germany
The availability of financial data recorded on high-frequency level has inspired a research area which over the last decade emerged to a major area in econometrics and statistics. The growing popularity of high-frequency econometrics is driven by technological progress in trading systems and an increasing importance of intraday trading, liquidity risk, optimal order placement as well as high-frequency volatility. This book provides a state-of-the art overview on the major approaches in high-frequency econometrics, including univariate and multivariate autoregressive conditional mean approaches for different types of high-frequency variables, intensity-based approaches for financial point processes and dynamic factor models. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications to volatility and liquidity estimation, order book modelling and market microstructure analysis.
Matrix Analysis and Computations introduces the basics of matrix analysis and presents representative methods and their corresponding theories in matrix computations. In this textbook, readers will find: The matrix theory necessary for direct and iterative methods for solving systems of linear equations. Systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods. Current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. Exercises at the end of each chapter for applying learned methods. This book is intended for graduate students, researchers, and engineers interested in matrix analysis and matrix computations. It is appropriate for the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.
One common characteristics of a complex system is its ability to
withstand major disturbances and the capacity to rebuild itself.
Understanding how such systems demonstrate resilience by absorbing
or recovering from major external perturbations requires both
quantitative foundations and a multidisciplinary view on the
topic.
This book presents a variety of advanced research papers in optimization and dynamics written by internationally recognized researchers in these fields. As an example of applying optimization in sport, it introduces a new method for finding the optimal bat sizes in baseball and softball. The book is divided into three parts: operations research, dynamics, and applications. The operations research section deals with the convergence of Newton-type iterations for solving nonlinear equations and optimum problems, the limiting properties of the Nash bargaining solution, the utilization of public goods, and optimizing lot sizes in the automobile industry. The topics in dynamics include special linear approximations of nonlinear systems, the dynamic behavior of industrial clusters, adaptive learning in oligopolies, periodicity in duopolies resulting from production constraints, and dynamic models of love affairs. The third part presents applications in the fields of reverse logistic network design for end-of-life wind turbines, fuzzy optimization of the structure of agricultural products, water resources management in the restoration plans for a lake and also in groundwater supplies. In addition it discusses applications in reliability engineering to find the optimal preventive replacement times of deteriorating equipment and using bargaining theory to determine the best maintenance contract. The diversity of the application areas clearly illustrates the usefulness of the theory and methodology of optimization and dynamics in solving practical problems.
Optical networks epitomize complex communication systems, and they comprise the Internet s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering."
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world's leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences.
Since the volume may be of interest to a broad variety of people, it is arranged in parts that require different levels of mathematical background. Part I is written in a simple form and can be assessed by any computer-literate person interested in the application of visualization methods in decision making. This part will be of interest to specialists and students in various fields related to decision making including environmental studies, management, business, engineering, etc. In Part II computational methods are introduced in a relatively simple form. This part will be of interest to specialists and students in the field of applied optimization, operations research and computer science. Part III is written for specialists and students in applied mathematics interested in the theoretical basis of modern optimization. Due to this structure, the parts can be read independently. For example, students interested in environmental applications could restrict themselves to Part I and the Epilogue. In contrast, those who are interested in computational methods can skip Part I and read Part II only. Finally, specialists, who are interested in the theory of approximation of multi-dimensional convex sets or in estimation of disturbances of polyhedral sets, can read the corresponding chapters of Part III.
This text is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, numerical dynamical systems, molecular dynamics and ocean/atmosphere dynamics, nonequilibrium statistical mechanics. The volume will serve as a valuable reference for mathematicians, physicists, engineers, biologists and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open or non-equilibrium behaviour.
This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the efficiency of the simulation-driven design process. High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design-while highly desirable-is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.
Linear Programming (LP) is perhaps the most frequently used
optimization technique. One of the reasons for its wide use is that
very powerful solution algorithms exist for linear optimization.
Computer programs based on either the simplex or interior point
methods are capable of solving very large-scale problems with high
reliability and within reasonable time. Model builders are aware of
this and often try to formulate real-life problems within this
framework to ensure they can be solved efficiently. It is also true
that many real-life optimization problems can be formulated as
truly linear models and also many others can well be approximated
by linearization. The two main methods for solving LP problems are
the variants of the simplex method and the interior point methods
(IPMs). It turns out that both variants have their role in solving
different problems. It has been recognized that, since the
introduction of the IPMs, the efficiency of simplex based solvers
has increased by two orders of magnitude. This increased efficiency
can be attributed to the following: (1) theoretical developments in
the underlying algorithms, (2) inclusion of results of computer
science, (3) using the principles of software engineering, and (4)
taking into account the state-of-the-art in computer technology.
This book presents the most important published articles of Martin Shubik who has made a path-breaking contribution to game theory and political economy. The volume shows how game theory can be used to explore fundamental problems in economics, political science and operations research.The book opens with an introduction to the career of Martin Shubik and the influences which have shaped his research. In this, and the chapters which follow, Martin Shubik stresses the importance of formulative models as playable games and the treatment of information to describe decision making among individuals, using examples from industrial organization. He demonstrates that games are a fruitful way to extend our knowledge of competition among the few. In addition, he considers the importance of gaming in economics and business suggesting that experimental games can be used to illustrate problems and principles in multi-person decision making. This book will be welcomed by economists, game theorists, political scientists, and operations researchers.
Game Theory has been an area of rapid growth and substantial interest in economics and it has impacted upon all areas within economics. This text covers the main theory and techniques and gives particular emphasis to aspects that have been neglected, including co-operative games, experiments, and empirical studies. It provides a comprehensive and up-to-date introduction to the use of game theory in economics.
The volume is dedicated to Stephen Smale on the occasion of his 80th birthday.Besides his startling 1960 result of the proof of the Poincare conjecture for all dimensionsgreater than or equal to five, Smale's ground breaking contributions invarious fields in Mathematics have marked the second part of the 20th century andbeyond. Stephen Smale has done pioneering work in differential topology, globalanalysis, dynamical systems, nonlinear functional analysis, numerical analysis, theoryof computation and machine learning as well as applications in the physical andbiological sciences and economics. In sum, Stephen Smale has manifestly brokenthe barriers among the different fields of mathematics and dispelled some remainingprejudices. He is indeed a universal mathematician. Smale has been honoredwith several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolfPrize (2006/2007)."
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates. "
A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world 's leading groups in the area of Bayesian identification, control, and decision making. An accompanying CD illustrates the book 's underlying theory.
The mathematical theory for many application areas depends on a deep understanding of the theory of moments. These areas include medical imaging, signal processing, computer visualization, and data science. The problem of moments has also found novel applications to areas such as control theory, image analysis, signal processing, polynomial optimization, and statistical big data. The Classical Moment Problem and Some Related Questions in Analysis presents: a unified treatment of the development of the classical moment problem from the late 19th century to the middle of the 20th century, important connections between the moment problem and many branches of analysis, a unified exposition of important classical results, which are difficult to read in the original journals, and a strong foundation for many areas in modern applied mathematics.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
This book is an up-to-date documentation of the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The well-structured wealth of problems, algorithms, results, and techniques introduced systematically will make the book an indispensible source of reference for professionals. The smooth integration of numerous illustrations, examples, and exercises make this monograph an ideal textbook.
Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications."
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs."
This book includes a collection of research articles presented at the "6th International Workshop on Hydro Scheduling in Competitive Electricity Markets". The workshop was a unique and intimate forum for researchers and practitioners to present state-of-the-art research and development concerning novel methodological findings, best practices and real-life applications of hydro scheduling. It also provided a platform for discussing the developments that are taking place in the industry, sharing different experiences and discussing future trends related to this area. This proceedings book is a collection of the most relevant, high-quality articles from the workshop. Discussing the state-of-the-art in the field of hydro scheduling, it is a valuable resource for a wide audience of researchers and practitioners in the field now and in the interesting and challenging times ahead. |
You may like...
Bio-Inspired Collaborative Intelligent…
Yongsheng Ding, Lei Chen, …
Hardcover
R4,890
Discovery Miles 48 900
Computational Methods in Condensed…
A.A. Katsnelson, V.S. Stepanyuk, …
Hardcover
R2,660
Discovery Miles 26 600
SAS Graphics for Clinical Trials by…
Kriss Harris, Richann Watson
Hardcover
R1,510
Discovery Miles 15 100
|