![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C."
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming."
This book is concerned with situations in which several persons reach decisions independently and the final consequence depends, potentially, upon each of the decisions taken. Such situations may be described formally by an extensive form game: a mathematical object which specifies the order in which decisions are to be taken, the information available to the decision makers at each point in time, and the consequence that results for each possible combination of decisions. A necessary requirement for rational behavior in such games is that each decision maker should reach a decision that is optimal, given his preferences over his own decisions. This requirement is far from sufficient, however, since every decision maker should in addition base his preferences upon the conjecture that his opponents will act optimally as well. It is this principle that distinguishes noncooperative game theory from one-person decision theory. The main purpose of Rationality in Extensive Form Games is to discuss different formalizations of this principle in extensive form games, such as backward induction, Nash equilibrium, forward induction and rationalizability, under the assumption that the decision makers' preferences are given by subjective expected utility functions. The various formalizations, or rationality criteria, are illustrated by examples, and the relationships among the different criteria are explored.
Performance evaluation of increasingly complex human-made systems requires the use of simulation models. However, these systems are difficult to describe and capture by succinct mathematical models. The purpose of this book is to address the difficulties of the optimization of complex systems via simulation models or other computation-intensive models involving possible stochastic effects and discrete choices. This book establishes distinct advantages of the "softer" ordinal approach for search-based type problems, analyzes its general properties, and shows the many orders of magnitude improvement in computational efficiency that is possible.
The developments within the computationally and numerically oriented ar eas of Operations Research, Finance, Statistics and Economics have been sig nificant over the past few decades. Each area has been developing its own computer systems and languages that suit its needs, but there is relatively little cross-fertilization among them yet. This volume contains a collection of papers that each highlights a particular system, language, model or paradigm from one of the computational disciplines, aimed at researchers and practitioners from the other fields. The 15 papers cover a number of relevant topics: Models and Modelling in Operations Research and Economics, novel High-level and Object-Oriented approaches to programming, through advanced uses of Maple and MATLAB, and applications and solution of Differential Equations in Finance. It is hoped that the material in this volume will whet the reader's appetite for discovering and exploring new approaches to old problems, and in the longer run facilitate cross-fertilization among the fields. We would like to thank the contributing authors, the reviewers, the publisher, and last, but not least, Jesper Saxtorph, Anders Nielsen, and Thomas Stidsen for invaluable technical assistance."
Essays on Cooperative Games collates selected contributions on Cooperative Games. The papers cover both theoretical aspects (Coalition Formation, Values, Simple Games and Dynamic Games) and applied aspects (in Finance, Production, Transportation and Market Games). A contribution on Minimax Theorem (by Ken Binmore) and a brief history of early Game Theory (by Gianfranco Gambarelli and Guillermo Owen) are also enclosed.
During the last decade I have explored the consequences of what I have chosen to call the 'consistent preferences' approach to deductive reasoning in games. To a great extent this work has been done in coop eration with my co-authors Martin Dufwenberg, Andres Perea, and Ylva Sovik, and it has lead to a series of journal articles. This book presents the results of this research program. Since the present format permits a more extensive motivation for and presentation of the analysis, it is my hope that the content will be of interest to a wider audience than the corresponding journal articles can reach. In addition to active researcher in the field, it is intended for graduate students and others that wish to study epistemic conditions for equilibrium and rationalizability concepts in game theory. Structure of the book This book consists of twelve chapters. The main interactions between the chapters are illustrated in Table 0.1. As Table 0.1 indicates, the chapters can be organized into four dif ferent parts. Chapters 1 and 2 motivate the subsequent analysis by introducing the 'consistent preferences' approach, and by presenting ex amples and concepts that are revisited throughout the book. Chapters 3 and 4 present the decision-theoretic framework and the belief operators that are used in later chapters. Chapters 5, 6, 10, and 11 analyze games in the strategic form, while the remaining chapters-Chapters 7, 8, 9, and 12-are concerned with games in the extensive form.
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named "Hybridized Nash-Pareto games". Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems. This book will be of interest to students, young scientists and engineers involved in the field of multi physics optimization.
Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
Constrained optimization models are core tools in business, science, government, and the military with applications including airline scheduling, control of petroleum refining operations, investment decisions, and many others. Constrained optimization models have grown immensely in scale and complexity in recent years as inexpensive computing power has become widely available. Models now frequently have many complicated interacting constraints, giving rise to a host of issues related to feasibility and infeasibility. For example, it is sometimes difficult to find any feasible point at all for a large model, or even to accurately determine if one exists, e.g. for nonlinear models. If the model is feasible, how quickly can a solution be found? If the model is infeasible, how can the cause be isolated and diagnosed? Can a repair to restore feasibility be carried out automatically? Researchers have developed numerous algorithms and computational methods in recent years to address such issues, with a number of surprising spin-off applications in fields such as artificial intelligence and computational biology. Over the same time period, related approaches and techniques relating to feasibility and infeasibility of constrained problems have arisen in the constraint programming community. Feasibility and Infeasibility in Optimization is a timely expository book that summarizes the state of the art in both classical and recent algorithms related to feasibility and infeasibility in optimization, with a focus on practical methods. All model forms are covered, including linear, nonlinear, and mixed-integer programs. Connections to related work in constraint programming are shown. Part Iof the book addresses algorithms for seeking feasibility quickly, including new methods for the difficult cases of nonlinear and mixed-integer programs. Part II provides algorithms for analyzing infeasibility by isolating minimal infeasible (or maximum feasible) subsets of constraints, or by finding the best repair for the infeasibility. Infeasibility analysis algorithms have arisen primarily over the last two decades, and the book covers these in depth and detail. Part III describes applications in numerous areas outside of direct infeasibility analysis such as finding decision trees for data classification, analyzing protein folding, radiation treatment planning, automated test assembly, etc. A main goal of the book is to impart an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications. The book is of interest to researchers, students, and practitioners across the applied sciences who are working on optimization problems.
This book is devoted to geometric methods in the theory of differential equations with quadratic right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. Connections of the calculus of variations and the Riccati equation with the geometry of Lagrange-Grassmann manifolds and classical Cartan-Siegel homogeneity domains in a space of several complex variables are considered. In the study of the minimization problem for a multiple integral, a quadratic partial differential equation that is an analogue of the Riccati equation in the calculus of varatiations is studied. This book is based on lectures given by the author ower a period of several years in the Department of Mechanics and Mathematics of Moscow State University. The book is addressed to undergraduate and graduate students, scientific researchers and all specialists interested in the problems of geometry, the calculus of variations, and differential equations.
The primary goal of this book is to present the research
findings and conclusions of physicists, economists, mathematicians
and financial engineers working in the field of "Econophysics" who
have undertaken agent-based modelling, comparison with empirical
studies and related investigations.
This monograph studies multi-member households or, more generally, socio-economic groups from a purely theoretical perspective and within a general equilibrium framework, in contrast to a sizeable empirical literature. The approach is based on the belief that households, their composition, decisions and behavior within a competitive market economy deserve thorough examination. The authors set out to link the formation, composition, decision-making, and stability of households. They develop general equilibrium models of pure exchange economies in which households can have several, typically heterogeneous members and act as collective decision-making units on the one hand and as competitive market participants on the other hand. Moreover, the more advanced models combine traditional exchange (markets for commodities) and matching (markets for people or partners) and develop implications for welfare, social structures, and economic policy. In the field of family economics, Hans Haller and Hans Gersbach have pioneered a 'market' approach that applies the tools of general equilibrium theory to the analysis of household behavior. This very interesting book presents an overview of their methods and results. This is an inspiring work. Pierre-Andre Chiappori, Columbia University, USA The sophisticated, insightful and challenging analysis presented in this book extends the theory of the multi-person household along an important but relatively neglected dimension, that of general equilibrium theory. It also challenges GE theorists themselves to follow Paul Samuelson in taking seriously the real attributes of that fundamental building block, the household, as a social group whose decisions may not satisfy the standard axioms of individual choice. This synthesis and extension of their earlier work by Gersbach and Haller will prove to be a seminal contribution in its field. Ray Rees, LMU Munich, Germany
This volume collects outstanding contributions to the theory of games, the theory of game-theoretical rationality, and their applications. 27 articles present the new situation and the recent advances in game theory after the award of the Nobel Prize in economics and especially in game theory to John F. Nash, John C. Harsanyi, and Reinhard Selten. Two of them, Harsanyi and Selten, have contributed leading articles to this volume. In utility and game theory, the question of which rationality governs their methods and the behavior of the agents as well has emerged as one of the most exciting new conceptual foundations of all social sciences. The main aim of this book is to find an answer to this problem. Do we have to give up our belief in the traditional form of deductive and linear rationality in the social sciences in favor of probabilistic and stochastic methods? Which kind of rationality do we, and should we, use when we attempt to practically solve societal problems and conflicts? Quite a few articles in this book address these questions. The consequences of a new, multi-faceted rationality, which is going to shake the traditional foundation of game theory, decision theory, and utility theory, and, finally, the social sciences in their entirety, are discussed in depth in seven chapters and a preface: Rationality and the Foundations of the Social Sciences, ' Cooperation and Rationality, ' Rationality and Economics, ' Bayesian Theory and Rationality, ' Evolution and Evolutionary Game Theory, ' Ethics and Game Theory, ' and Applications of Game Theory'. The contributors include economists, utility and decision theorists, psychologists, sociologists, physicists, philosophers of sciencesand probability theorists. They attempt to make their contributions accessible to a wide audience. The book will interest researchers, teachers and advanced students in the above-mentioned disciplines; it can be used for a one-semester course on the graduate level. The volume also includes a review section focusing on recent publications on Logical Empiricism and its influence. An autobiographical report on the Vienna Circle by Arne Naess follows the main part of the Yearbook. An overview of the activities of the Institute Vienna Circle 1997/98 concludes the volume.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 18-20, 2010. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
The material of the present book is an extension of a graduate course given by the author at the University "Al.I. Cuza" Iasi and is intended for stu dents and researchers interested in the applications of optimal control and in mathematical biology. Age is one of the most important parameters in the evolution of a bi ological population. Even if for a very long period age structure has been considered only in demography, nowadays it is fundamental in epidemiology and ecology too. This is the first book devoted to the control of continuous age structured populationdynamics.It focuses on the basic properties ofthe solutions and on the control of age structured population dynamics with or without diffusion. The main goal of this work is to familiarize the reader with the most important problems, approaches and results in the mathematical theory of age-dependent models. Special attention is given to optimal harvesting and to exact controllability problems, which are very important from the econom ical or ecological points of view. We use some new concepts and techniques in modern control theory such as Clarke's generalized gradient, Ekeland's variational principle, and Carleman estimates. The methods and techniques we use can be applied to other control problems."
The availability of financial data recorded on high-frequency level has inspired a research area which over the last decade emerged to a major area in econometrics and statistics. The growing popularity of high-frequency econometrics is driven by technological progress in trading systems and an increasing importance of intraday trading, liquidity risk, optimal order placement as well as high-frequency volatility. This book provides a state-of-the art overview on the major approaches in high-frequency econometrics, including univariate and multivariate autoregressive conditional mean approaches for different types of high-frequency variables, intensity-based approaches for financial point processes and dynamic factor models. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications to volatility and liquidity estimation, order book modelling and market microstructure analysis.
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.
This book discusses recent developments in the vast domain of optimization. Featuring papers presented at the 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA 2016), held at the Heritage Institute of Technology, Kolkata, on 24-26 December 2016, it opens new avenues of research in all topics related to optimization, such as linear and nonlinear optimization; combinatorial-, stochastic-, dynamic-, fuzzy-, and uncertain optimization; optimal control theory; as well as multi-objective, evolutionary and convex optimization and their applications in intelligent information and technology, systems science, knowledge management, information and communication, supply chain and inventory control, scheduling, networks, transportation and logistics and finance. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world's leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences.
This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.
This book presents a variety of advanced research papers in optimization and dynamics written by internationally recognized researchers in these fields. As an example of applying optimization in sport, it introduces a new method for finding the optimal bat sizes in baseball and softball. The book is divided into three parts: operations research, dynamics, and applications. The operations research section deals with the convergence of Newton-type iterations for solving nonlinear equations and optimum problems, the limiting properties of the Nash bargaining solution, the utilization of public goods, and optimizing lot sizes in the automobile industry. The topics in dynamics include special linear approximations of nonlinear systems, the dynamic behavior of industrial clusters, adaptive learning in oligopolies, periodicity in duopolies resulting from production constraints, and dynamic models of love affairs. The third part presents applications in the fields of reverse logistic network design for end-of-life wind turbines, fuzzy optimization of the structure of agricultural products, water resources management in the restoration plans for a lake and also in groundwater supplies. In addition it discusses applications in reliability engineering to find the optimal preventive replacement times of deteriorating equipment and using bargaining theory to determine the best maintenance contract. The diversity of the application areas clearly illustrates the usefulness of the theory and methodology of optimization and dynamics in solving practical problems.
One common characteristics of a complex system is its ability to
withstand major disturbances and the capacity to rebuild itself.
Understanding how such systems demonstrate resilience by absorbing
or recovering from major external perturbations requires both
quantitative foundations and a multidisciplinary view on the
topic.
Since the volume may be of interest to a broad variety of people, it is arranged in parts that require different levels of mathematical background. Part I is written in a simple form and can be assessed by any computer-literate person interested in the application of visualization methods in decision making. This part will be of interest to specialists and students in various fields related to decision making including environmental studies, management, business, engineering, etc. In Part II computational methods are introduced in a relatively simple form. This part will be of interest to specialists and students in the field of applied optimization, operations research and computer science. Part III is written for specialists and students in applied mathematics interested in the theoretical basis of modern optimization. Due to this structure, the parts can be read independently. For example, students interested in environmental applications could restrict themselves to Part I and the Epilogue. In contrast, those who are interested in computational methods can skip Part I and read Part II only. Finally, specialists, who are interested in the theory of approximation of multi-dimensional convex sets or in estimation of disturbances of polyhedral sets, can read the corresponding chapters of Part III. |
You may like...
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Occupational Health and Safety - A…
Manikam Pillay, Michael Tuck
Hardcover
R3,055
Discovery Miles 30 550
Edexcel GCSE (9-1) Physics Student Book
Mark Levesley, Penny Johnson, …
Paperback
R1,505
Discovery Miles 15 050
|