![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
High quality leads provide the foundation for the discovery of successful clinical development candidates, and therefore the identi?cation of leads is an essential part of drug discovery. The process for the identi?cation of leads generally starts with the screening of a compound collection, either an HTS of a relatively large compound collection (hundreds of thousands to one million plus compounds) or a more focused screen of a smaller set of compounds that have been preselected for the target of interest. Virtual screening methods such as structure-based or pharmacophore-based searches can complement or replace one of the above approaches. Once hits are identi?ed from one or more of these screening methods, they need to be thoroughly characterized in order to con?rm activity and identify areas in need of optimization. Finally, once fully characterized hits are identi?ed, preliminary optimization through synthetic modi?cation is carried out to generate leads. Parallel optimization of all properties, including biological, physicochemical, and ADME is the most ef?cient approach to the identi?cation of leads. Hit characterization is described in the previous chapter. The focus of this chapter is on hit optimization and the identi?- tion of leads. After a general overview of these processes, examples taken from the literature since 2001 will be used to illustrate speci?c points. There are also a number of excellent reviews covering the lead identi?cation process [1-6].
This book offers concise and unbiased presentations by synthetic
and analytical chemists who have been involved in creating and
moving the field of combinatorial chemistry into the academic and
industrial mainstream. Since the synthetic method often dictates
the appropriate types of analysis, each chapter or section begins
with a description of the synthesis approach and its advantages.
The description of various combinatorial and high-throughput
parallel synthesis techniques provide a relevant point of entry for
synthetic chemists who need to set up appropriate characterisation
methods for his/her organisation. This is an invaluable resource
for all organic and analytical chemists in the pharmaceutical,
agrochemical, and biotechnology fields who are either involved in,
or beginning to investigate combinatorial techniques to increase
overall efficiency and productivity.
Chemistry and Biology is a celebration of the outstanding
contributions to the field by Professor R.H.F. Manske, who founded
the series in 1950. This special volume demonstrates the dramatic
changes in alkaloidchemistry since then. It also offers a unique
overview of recent developments in major areas of alkaloid
chemistry and biology and looks at how these areas will develop in
the future. These fourteen contributions are written by many of the
leading alkaloid chemists in the world, and thus comprise a unique
view of alkaloids and their contributions to the health and
well-being of humankind.
Understanding cooperative phenomena far from equilibrium is one of the fascinating challenges of present-day many-body physics. Glassy behaviour and the physical ageing process of such materials are paradigmatic examples. The present volume, primarily intended as introduction and reference, collects six extensive lectures addressing selected experimental and theoretical issues in the field of glassy systems.
Since its inception in 1945, this serial has provided critical and integrating articles written by research specialists in industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology in the study of carbohydrates. The articles provide a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
"Organocatalyzed Reactions" "I" and "II" presents a timely
summary of organocatalysed reactions including: a) Enantioselective
C-C bond formation processes e.g. Michael-addition,
Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol
reaction, allylation, cycloadditions, aza-Diels-Alder reactions,
benzoin condensation, Stetter reaction, conjugative Umpolung,
asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective
reduction processes e.g. Reductive amination of aldehydes or
ketones, asymmetric transfer hydrogenation; c) Asymmetric
enantioselective oxidation processes;
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
This proceedings volume contains abstracts from MCR 2009, the Fourth International Conference on Multi-Component Reactions and Related Chemistry (Ekaterinburg, Russia). The main focus of this conference was on multi-component reactions, though its scope also embraced organic synthesis via tandem or cascade reactions, combinatorial approaches to new materials, catalysts and supramolecular structures. Multi-component reactions warrant ever-increasing attention, as they are ideally suited for combinatorial synthesis (either on solid support or in solution) of libraries of products relevant to catalysis, such as agrochemicals or pharmaceuticals. Therefore, the study and implementation of MCRs possesses a wide range of appeal and applicability. A broad and expanding audience of scientists and students continues to apply the concepts of multi-component chemistry to an array of disciplines-this collection of research offers an angle for each and brings together the vast scope of possibilities within the greater community. Content Level Research
Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis, synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests, reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Volume 31 covers literature published during 2001. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question.
New Antisense Strategies: Chemical Synthesis of RNA Oligomers, by Junichi Yano und Gerald E. Smyth Development and Modification of Decoy Oligodeoxynucleotides for Clinical Application, by Mariana Kiomy Osako, Hironori Nakagami und Ryuichi Morishita Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides, by Ekambar R. Kandimalla und Sudhir Agrawal Delivery of Nucleic Acid Drugs, by Yan Lee und Kazunori Kataoka Aptamer: Biology to Applications, by Yoshikazu Nakamura Development and Clinical Applications of Nucleic Acid Therapeutics, by Veenu Aishwarya, Anna Kalota und Alan M. Gewirtz
Frustrated Lewis Pairs: From Dihydrogen Activation to Asymmetric Catalysis, by Dianjun Chen, Jurgen Klankermayer Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel Implications for Reactivity, by Heinz Berke, Yanfeng Jiang, Xianghua Yang, Chunfang Jiang, Subrata Chakraborty, Anne Landwehr New Organoboranes in "Frustrated Lewis Pair" Chemistry, by Zhenpin Lu, Hongyan Ye, Huadong Wang Paracyclophane Derivatives in Frustrated Lewis Pair Chemistry, by Lutz Greb, Jan Paradies Novel Al-Based FLP Systems, by Werner Uhl, Ernst-Ulrich Wurthwein N-Heterocyclic Carbenes in FLP Chemistry, by Eugene L. Kolychev, Eileen Theuergarten, Matthias Tamm Carbon-Based Frustrated Lewis Pairs, by Shabana Khan, Manuel Alcarazo Selective C-H Activations Using Frustrated Lewis Pairs. Applications in Organic Synthesis, by Paul Knochel, Konstantin Karaghiosoff, Sophia Manolikakes FLP-Mediated Activations and Reductions of CO2 and CO, by Andrew E. Ashley, Dermot O Hare Radical Frustrated Lewis Pairs, by Timothy H. Warren and Gerhard Erker Polymerization by Classical and Frustrated Lewis Pairs, by Eugene Y.-X. Chen Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems, by D. Wass Reactions of Phosphine-Boranes and Related Frustrated Lewis Pairs with Transition Metal Complexes, by Abderrahmane Amgoune, Ghenwa Bouhadir, Didier Bourissou"
Introduction to Organic Chemistry, 6th Global Edition provides an introduction to organic chemistry for students who require the fundamentals of organic chemistry as a requirement for their major. It is most suited for a one semester organic chemistry course. In an attempt to highlight the relevance of the material to students, the authors place a strong emphasis on showing the interrelationship between organic chemistry and other areas of science, particularly the biological and health sciences. The text illustrates the use of organic chemistry as a tool in these sciences; it also stresses the organic compounds, both natural and synthetic, that surround us in everyday life: in pharmaceuticals, plastics, fibers, agrochemicals, surface coatings, toiletry preparations and cosmetics, food additives, adhesives, and elastomers.
Established in 1960, "Advances in Heterocyclic Chemistry" is the
definitive serial in the area one of great importance to organic
chemists, polymer chemists, and many biological scientists. Written
by established authorities in the field, the comprehensive reviews
combine descriptive chemistry and mechanistic insight and yield an
understanding of how the chemistry drives the properties.
Coronavirus Drug Discovery, Volume Two: Antiviral Agents from Natural Products and Nanotechnological Applications presents detailed information on drug discovery against COVID-19. Sections in this volume present chapters that focus on the various antiviral agents from natural products that have the propensity to be used as chemical scaffolds for the development of drugs against COVID-19. Also captured are the dietary sources of antioxidant bioactives that may help boost the immune system for the management of COVID-19. Other chapters describe the application of nanotechnology for efficient and effective delivery of drugs against COVID-19. Written by global team of experts, this book is an excellent resource for drug developers, medicinal chemists, pharmaceutical companies in R&D and research institutes in both academia and industry.
This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.
Organophosphorus Chemistry provides a comprehensive annual review of the literature. Coverage includes phosphines and their chalcogenides, phosphonium salts, low coordination number phosphorus compounds, penta- and hexa-coordinated compounds, tervalent phosphorus acids, nucleotides and nucleic acids, ylides and related compounds, and phosphazenes. The series will be of value to research workers in universities, government and industrial research organisations, whose work involves the use of organophosphorus compounds. It provides a concise but comprehensive survey of a vast field of study with a wide variety of applications, enabling the reader to rapidly keep abreast of the latest developments in their specialist areas. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This is truly an exciting time to be in the ?eld of polymer science. Advances in polymerization methods are providing polymer scientists with the ability to specify and control polymer composition, structure, architecture, and molecular weight to a degree that was not possible just a decade ago. This, in turn, is resulting in many novel application possibilities of polymers ranging from drug delivery systems and nanolithographyto stimuli-responsivematerials and many others. In addition,many of the application areas of polymers - such as coatings, adhesives, thermoplastics, composites, and personal care - are also taking advantage of the ability to design polymersduringtheir developmentefforts. Not to forget,manyof these applications of polymers involve mixing polymers with solvents, catalysts, colorants, and many other ingredients to prepare a formulated product. However, the tuning of polymer composition and structure as well as polymer formulations to optimize the ?nal performance properties can be challenging, - pecially since in many cases several interacting variables need to be optimized simultaneously. This is where the methodologies and techniques of combinatorial and high-throughput experimentation to synthesize and characterize polymer - braries can be an invaluable approach. Simply put, a polymer library is a collection of multiple polymer samples having a systematic variation in one or more variables related to composition, structure, or process. Various methods and strategies have been explored to ef?ciently prepare a large number of polymer samples and also to screen these samples for key properties of interest.
Today, young cosmetics researchers who have completed their graduate studies and have entered a cosmetics company are put through several years of training before they become qualified to design cosmetics formulations themselves. They are trained so that they can design formulas not by a process of logic but by heart, like craftsmen, chefs, or carpenters. This kind of training seems a terrible waste of labor and time. To address this issue and allow young scientists to design novel cosmetics formulations, effectively bringing greater diversity of innovation to the industry, this book provides a key set of skills and the knowledge necessary for such pursuits. The volume provides the comprehensive knowledge and instruction necessary for researchers to design and create cosmetics products. The book's chapters cover a comprehensive list of topics, which include, among others, the basics of cosmetics, such as the raw materials of cosmetics and their application; practical techniques and technologies for designing and manufacturing cosmetics, as well as theoretical knowledge; emulsification; sensory evaluations of cosmetic ingredients; and how to create products such as soap-based cleansers, shampoos, conditioners, creams, and others. The potential for innovation is great in Japan's cosmetics industry. This book expresses the hope that the high level of dedicated research continues and proliferates, especially among those who are innovators at heart.
Organic Chemistry: A Series of Monographs, Volume 47: Hetero Diels-Alder Methodology in Organic Synthesis focuses on the use of hetero Diels-Alder reactions as pivotal steps in natural product total syntheses. The publication first offers information on N-sulfinyl compounds and sulfur diimides and imino dienophiles. Discussions focus on sulfur dioxide and related compounds, selenium dioxide, sulfur diimide cycloadditions, regiochemical, stereochemical, and mechanistic aspects, iminium salts and neutral imines, oximino compounds, and intramolecular cycloadditions. The text then takes a look at nitroso and thionitroso dienophiles and carbonyl dienophiles. The manuscript elaborates on thiocarbonyl and selenocarbonyl dienophiles and miscellaneous dienophiles. Topics include nitriles, azo compounds, selenoaldehydes, thioketones, thioesters, dithioesters, and related compounds, and thiophosgene and related compounds. The text also ponders on oxabutadienes, thiabutadienes, and azabutadienes. The publication is a valuable reference for chemists and readers interested in the Hetero Diels-Alder methodology.
Chemistry and Biology is a celebration of the outstanding
contributions to the field by Professor R.H.F. Manske, who founded
the series in 1950. This special volume demonstrates the dramatic
changes in alkaloidchemistry since then. It also offers a unique
overview of recent developments in major areas of alkaloid
chemistry and biology and looks at how these areas will develop in
the future. These fourteen contributions are written by many of the
leading alkaloid chemists in the world, and thus comprise a unique
view of alkaloids and their contributions to the health and
well-being of humankind.
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccharides and glycoconjugates. Coverage of topics such as nucleosides, amino-sugars, alditols and cyclitols also covers much research of relevance to biological and medicinal chemistry. Each volume of the series brings together references to all published work in given areas of the subject and serves as a comprehensive database for the active research chemist Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Established in 1960, "Advances in Heterocyclic Chemistry" is the
definitive serial in the area-one of great importance to organic
chemists, polymer chemists and many biological scientists. Written
by established authorities in the field, the comprehensive reviews
combine descriptive chemistry and mechanistic insight and yield an
understanding of how the chemistry drives the properties.
Historically Black colleges and universities play a vital role in the education of African Americans in the United States. For nearly 150 years, these institutions have trained the leadership of the Black community, graduating the nation's African American teachers, doctors, lawyers, and scientists. Despite the wealth of new research on Black colleges, there are topics that remain untouched and accomplishments that go unnoticed by the scholarly community. The chapters in this edited volume focus on topics that deserve further attention and that will push students, scholars, policymakers, and Black college administrators to reexamine their perspectives on and perceptions of Black colleges. |
![]() ![]() You may like...
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,669
Discovery Miles 56 690
Studies in Natural Products Chemistry…
Atta-ur Rahman
Hardcover
|