![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Pathology
Neuropathology of Drug Addictions and Substance Misuse, Volume 3: General Processes and Mechanisms, Prescription Medications, Caffeine and Areca, Polydrug Misuse, Emerging Addictions and Non-Drug Addictions is the third of three volumes in this informative series and offers a comprehensive examination of the adverse consequences of the most common drugs of abuse. Each volume serves to update the reader's knowledge on the broader field of addiction as well as to deepen understanding of specific addictive substances. Volume 3 addresses prescription medications, caffeine, polydrug misuse, and non-drug addictions. Each section provides data on the general, molecular, cellular, structural, and functional neurological aspects of a given substance, with a focus on the adverse consequences of addictions. Research shows that the neuropathological features of one addiction are often applicable to those of others, and understanding these commonalties provides a platform for studying specific addictions in more depth and may ultimately lead researchers toward new modes of understanding, causation, prevention and treatment. However, marshalling data on the complex relationships between addictions is difficult due to the myriad of material and substances.
Neuropathology of Drug Addictions and Substance Misuse, Volume 2: Stimulants, Club and Dissociative Drugs, Hallucinogens, Steroids, Inhalants and International Aspects is the second of three volumes in this informative series and offers a comprehensive examination of the adverse consequences of the most common drugs of abuse. Each volume serves to update the reader's knowledge on the broader field of addiction as well as to deepen understanding of specific addictive substances. Volume 2 addresses stimulants, club and dissociative drugs, hallucinogens, and inhalants and solvents. Each section provides data on the general, molecular and cellular, and structural and functional neurological aspects of a given substance, with a focus on the adverse consequences of addictions. Research shows that the neuropathological features of one addiction are often applicable to those of others, and understanding these commonalties provides a platform for studying specific addictions in more depth and may ultimately lead researchers toward new modes of understanding, causation, prevention, and treatment. However, marshalling data on the complex relationships between addictions is difficult due to the myriad material and substances.
Ebola Virus Disease: From Origins to Outbreak covers Ebola virus disease in its entirety from its origins through major outbreaks in the past to the present day outbreak. It contains information on the West Saharan response to Ebola as well as highlights from the field in West Africa from Dr. Qureshi and Dr. Chughtai, helping to solve the primary question of what's next and aiding in formulating a path forward. With a growing awareness of the devastating effects of this viral disease and an influx of topical research, this book provides the information the global community of researchers, clinicians and students need to better inform their research and study of Ebola virus disease.
Fossil Parasites, the latest edition in the Advances in Parasitology series established in 1963, contains comprehensive and up-to-date reviews on all areas of interest in contemporary parasitology, including medical studies of parasites of major influence, such as plasmodium falciparum and trypanosomes. The series also contains reviews of more traditional areas, such as zoology, taxonomy, and life history, which help to shape current thinking and applications. Parasitism is a dominant life history strategy and we know it has existed for millions of years. Detecting parasitism in the fossil record is problematic because we rarely see direct evidence and usually must rely on indirect evidence to infer its existence. This unique volume takes a broad and systematic view of direct and indirect evidence for parasitism in the fossil record.
This volume of Progress in Molecular Biology and Translational Science focuses on the molecular biology of eye disease.
Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology, containing comprehensive reviews of the most current research in applied microbiology. Users will find invaluable references and information on a variety of areas, including protozoan grazing of freshwater biofilms, metals in yeast fermentation processes, the interpretation of host-pathogen dialogue through microarrays, and the role of polyamines in bacterial growth and biofilm formation. Eclectic volumes are supplemented by thematic volumes on various topics, including Archaea and sick building syndrome.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays. Eclectic volumes are supplemented by thematic volumes on various topics, including Archaea and sick building syndrome. Impact factor for 2013: 2.243
First published in 1963, Advances in Parasitology contains comprehensive and up-to-date reviews in all areas of interest in contemporary parasitology. Advances in Parasitology includes medical studies of parasites of major influence, such as Plasmodium falciparum and trypanosomes. The series also contains reviews of more traditional areas, such as zoology, taxonomy, and life history, which shape current thinking and applications. The 2013 impact factor is 4.36.
Volume 6 provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Attention is given to a number of mechanistic advances in the understanding of regulation, particularly the importance of nutrient availability; microRNAs; and cross-talk with other protein degradation pathways. Intracellular pathogen repurposing of autophagy for pathogenic benefit is also provided, with coverage of Herpesvirus protein modulation of autophagy; the varicella-zoster virus and the maintenance of homeostasis; and the relationship between autophagy and the hepatitis b virus. The significance of autophagy in host defense is elucidated, providing a specific focus on facilitation of antigen presentation; participation in thymic development; and the sharing of regulatory nodes with innate immunity. Selective autophagy for the degradation of mitochondria and endocytosed gap junctions are also explored. This book is an asset to newcomers as a concise overview of the regulation of autophagy, its role in host defense and immunity, and selective autophagy, while serving as an excellent reference for more experienced scientists and clinicians looking to update their knowledge. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
The interactions of cells with their surrounding extracellular matrix (ECM) plays a pivotal role in driving normal cell behavior, from development to tissue differentiation and function. At the cellular level, organ homeostasis depends on a productive communication between cells and ECM, which eventually leads to the normal phenotypic repertoire that characterize each cell type in the organism. A failure to establish these normal interactions and to interpret the cues emanating from the ECM is one of the major causes in abnormal development and the pathogenesis of multiple diseases. To recognize and act upon the biophysical signals that are generated by the cross talk between cells and ECM, the cells developed specific receptors, among them a unique set of receptor tyrosine kinases (RTKs), known as the Discoidin Domain Receptors (DDRs). The DDRs are the only RTKs that specifically bind to and are activated by collagen, a major protein component of the ECM. Hence, the DDRs are part of the signaling networks that translate information from the ECM, and thus they are key regulators of cell-matrix interactions. Under physiological conditions, DDRs control cell and tissue homeostasis by acting on collagen sensors; transducing signals that regulate cell polarity, tissue morphogenesis, cell differentiation, and collagen deposition. DDRs play a key role in diseases that are characterized by dysfunction of the stromal component, which lead to abnormal collagen deposition and the resulting fibrotic response that disrupt normal organ function in disease of the cardiovascular system, lungs and kidneys, just to mention a few. In cancer, DDRs are hijacked by tumor and stromal cells to disrupt normal cell-collagen communication and initiate pro-oncogenic programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function, and contribute to cancer progression. Therefore, the strong causative association between altered RTK function and disease it is been translated today in the development of specific tyrosine kinase inhibitors targeting DDRs for various disease conditions. In spite of the accumulating evidence highlighting the importance of DDRs in health and diseases, there is still much to learn about these unique RTKs, as of today there is a lack in the medical literature of a book dedicated solely to DDRs. This is the first comprehensive volume dedicated to DDRs, which will fill a gap in the field and serve those interested in the scientific community to learn more about these important receptors in health and disease.
Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and up-to-date, this book offers a valuable guide to these cellular processes whilst inciting researchers to explore their potentially important connections. Volume 5 comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. In spite of the increasing importance of autophagy in the various pathophysiological conditions mentioned above, this process remains underestimated and overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these and other diseases remains poorly understood. This book is an asset to newcomers as a concise overview of the diverse disease implications of autophagy, while serving as an excellent reference for more experienced scientists and clinicians looking to update their knowledge. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
"Integrative Anatomy and Pathophysiology in Traditional Chinese Medicine Cardiology" covers the structure, function, and pathology of the cardiovascular system from the TCM and western medical perspectives. It focuses specifically on western medicine anatomy and pathophysiology, along with TCM aspects of essence, qi, blood and body fluid concepts, production, and function to explain cardiovascular system dysfunction, its independent role and dependent interactions with the functions of other organ systems. This book is designed for US-based licensed TCM practitioners as
well as cardiology researchers.
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection and Aging, Volume 4 - Mitophagy presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson's Disease, cardiac aging, and skeletal muscle atrophy. The most current understanding of the proteins and pathways involved in mitophagy are covered, with specific attention to Nix and Bnip3, PINK1/Parkin, Atg32, and FUNDC1. The role of mitophagy in cancer, neurodegeneration, aging, infection, and inflammation is also discussed providing essential insights into the pathogenesis of a variety of mitochondria dysfunction-related diseases. This book is an asset to newcomers as a concise overview of the current knowledge on mitophagy, while serving as an excellent update reference for more experienced scientists working on other aspects of autophagy. From these well-developed foundations, researchers, translational scientists, and practitioners may work to better implement more effective therapies against some of the most devastating human diseases. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and up-to-date, this book offers a valuable guide to these cellular processes whilst encouraging researchers to explore their potentially important connections. Volume 3 explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury. A full section is devoted to in-depth exploration of autophagy in tumor development and cancer. Finally, the work explores the relationship between autophagy and apoptosis, with attention to the ways in which autophagy regulates apoptosis, and the ways in which autophagy has been explored in Lepidoptera, elucidating the use of larval midgut as a model for such exploration. From these well-developed foundations, researchers, translational scientists, and practitioners may work to better implement more effective therapies against some of the most devastating human diseases. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
Currently, intensive effort is being directed toward the
identification of molecular targets that can provide approaches to
the development of novel therapeutic strategies in cancer
management. This book focuses on metastasis-associated genes,
metastasis promoter and suppressor genes, which relate specifically
to behavioral alterations of cancer cells in epithelial mesenchymal
transition, cancer stem cell maintenance and propagation, and to
the acquisition of invasive and metastasis faculty. The function of
these genes has implications for cell cycle regulation and cell
proliferation and so constitute an essential element in cancer
growth and dissemination. The emphasis in this book is on how
appropriate these genes are as molecular targets and how
practicable are the constituents of their signal transduction
systems as potential candidates and how accessible they are to
targeted therapy. Written in a straightforward and clear style with
background information supporting the new research, this book will
be useful for students and researchers in cancer therapies.
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is a complete, authoritative examination of the role of autophagy in health and disease. Understanding this phenomenon is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward thinking, this four-volume work offers a valuable guide to cellular processes while encouraging researchers to explore their potentially important connections. Understanding the role of autophagy is critical, considering its association with numerous biological processes, including cellular development and differentiation, cancer (both antitumor and protumor functions), immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Cell homeostasis is achieved by balancing biosynthesis and cellular turnover. In spite of the increasing importance of autophagy in various pathophysiological conditions mentioned above, this process remains underestimated and overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these and other diseases (e.g., autoimmune disease) remains poorly understood. This work will broaden the knowledge base of academic and clinical professors, post-doctoral fellows, graduate and medical students regarding this vital biological process. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward thinking, these books offer a valuable guide to both cellular processes while inciting researchers to explore their potentially important connections. Considering that autophagy is associated with numerous biological processes, including cellular development and differentiation, cancer (both antitumor and protumor functions), immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases, there is a great need to understanding its role. Cell homeostasis is achieved by balancing biosynthesis and cellular turnover. In spite of the increasing importance of autophagy in various pathophysiological situations (conditions) mentioned above, this process remains underestimated and overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these and other diseases (e.g., autoimmune disease) remains poorly understood. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes. |
You may like...
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
SDL '97: Time for Testing - SDL, MSC and…
A. Cavalli, A. Sarma
Hardcover
R5,709
Discovery Miles 57 090
Introducing Delphi Programming - Theory…
John Barrow, Linda Miller, …
Paperback
(1)R785 Discovery Miles 7 850
Computability, Complexity and Languages…
Martin Davis, Ron Sigal, …
Hardcover
R1,528
Discovery Miles 15 280
|