![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
The three volume set LNCS 7062, LNCS 7063, and LNCS 7064
constitutes the proceedings of the 18th International Conference on
Neural Information Processing, ICONIP 2011, held in Shanghai,
China, in November 2011.
Medical imaging is an important topic and plays a key role in robust diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound. This book focuses primarily on model-based segmentation techniques, which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors working in industry and academia, and presents new material.
This volume proceedings contains revised selected papers from the 4th International Conference on Artificial Intelligence and Computational Intelligence, AICI 2012, held in Chengdu, China, in October 2012. The total of 163 high-quality papers presented were carefully reviewed and selected from 724 submissions. The papers are organized into topical sections on applications of artificial intelligence, applications of computational intelligence, data mining and knowledge discovery, evolution strategy, expert and decision support systems, fuzzy computation, information security, intelligent control, intelligent image processing, intelligent information fusion, intelligent signal processing, machine learning, neural computation, neural networks, particle swarm optimization, and pattern recognition.
The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The third volume includes 79 papers organized in topical sections on diffusion imaging: from acquisition to tractography; image acquisition, segmentation and recognition; image registration; neuroimage analysis; analysis of microscopic and optical images; image segmentation; diffusion weighted imaging; computer-aided diagnosis and planning; and microscopic image analysis.
During the last twenty years the problem of pattern recognition (specifically, image recognition) has been studied intensively by many investigators, yet it is far from being solved. The number of publications increases yearly, but all the experimental results-with the possible exception of some dealing with recognition of printed characters-report a probability of error significantly higher than that reported for the same images by humans. It is widely agreed that ideally the recognition problem could be thought of as a problem in testing statistical hypotheses. However, in most applications the immediate use of even the simplest statistical device runs head on into grave computational difficulties, which cannot be eliminated by recourse to general theory. We must accept the fact that it is impossible to build a universal machine which can learn an arbitrary classification of multidimensional signals. Therefore the solution of the recognition problem must be based on a priori postulates (concerning the sets of signals to be recognized) that will narrow the set of possible classifications, i.e., the set of decision functions. This notion can be taken as the methodological basis for the approach adopted in this book.
This book thoroughly surveys and examines advances in fingerprint sensing devices and in algorithms for fingerprint image analysis and matching. After an opening chapter on the history of fingerprint recognition, "Automatic Fingerprint Recognition Systems" moves into new technologies for inkless sensors, fingerprint image analysis techniques, including fingerprint video analysis, filtering and classification and other areas aimed at fully automatic operation. The book also addresses large-scale fingerprint identification system design, as well as standards. Topics and Features: * Covers numerous areas related to modern automatic fingerprint recognition, not just its history or forensic analysis * Examines advances in fingerprint sensing and fingerprint image filtering and preprocessing * Describes fingerprint feature abstraction, as well as compression and decompression of fingerprint images * Develops ideas related to large-scale, large-database fingerprint matching * Assesses such important areas as security in fingerprint matching and the common criterion protection profile This authoritative survey provides a unique reference for automatic fingerprint recognition concepts, technologies, and systems. Its editors and contributors are leading researchers and applied R&D developers of this technology. Biometrics and pattern recognition researchers, security professionals, and systems developers will find the work an indispensable resource for current knowledge and technology.
Human Identification Based on Gait is the first book to address gait as a biometric. Biometrics is now in a unique position where it affects most people's lives. This is especially true of "gait," which is one of the most recent biometrics. Recognizing people by the way they walk and run implies analyzing movement which, in turn, implies analyzing sequences of images, thus requiring memory and computational performance that became available only recently. Human Identification Based on Gait introduces developments from distinguished researchers within this relatively new area of biometrics. This book clearly establishes how human gait is biometric. Human Identification Based on Gait is structured to meet the needs of professionals in industry, as well as advanced-level students in computer science.
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
This book constitutes the refereed proceedings of the International Workshop on Mesh Processing in Medical Image Analysis, MeshMed 2012, held in Nice, France, in October 2012 in conjunction with MICCAI 2012, the 15th International Conference on Medical Image Computing and Computer Assisted Intervention. The book includes 16 submissions, 8 were selected for presentation along with the 3 plenary talks representative of the meshing, and 8 were selected for poster presentations. The papers cover a broad range of topics, including statistical shape analysis and atlas construction, novel meshing approaches, soft tissue simulation, quad dominant meshing and mesh based shape descriptors. The described techniques were applied to a variety of medical data including cortical bones, ear canals, cerebral aneurysms and vascular structures.
This book constitutes the refereed proceedings of the Second International Workshop on Multimodal Brain Image Analysis, held in conjunction with MICCAI 2012, in Nice, France, in October 2012. The 19 revised full papers presented were carefully reviewed and selected from numerous submissions. The objective of this workshop is to forward the state of the art in analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications.
This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.
The two-volume set LNCS 7552 + 7553 constitutes the proceedings of the 22nd International Conference on Artificial Neural Networks, ICANN 2012, held in Lausanne, Switzerland, in September 2012. The 162 papers included in the proceedings were carefully reviewed and selected from 247 submissions. They are organized in topical sections named: theoretical neural computation; information and optimization; from neurons to neuromorphism; spiking dynamics; from single neurons to networks; complex firing patterns; movement and motion; from sensation to perception; object and face recognition; reinforcement learning; bayesian and echo state networks; recurrent neural networks and reservoir computing; coding architectures; interacting with the brain; swarm intelligence and decision-making; mulitlayer perceptrons and kernel networks; training and learning; inference and recognition; support vector machines; self-organizing maps and clustering; clustering, mining and exploratory analysis; bioinformatics; and time weries and forecasting.
A fast and reasonably accurate perception of the environment is essential for successful navigation of an autonomous agent. Although many modes of sensing are applicable to this task and have been used, vision remains the most appealing due to its passive nature, good range, and resolution. Most vision techniques to recover depth for navigation use stereo. In the last few years, researchers have started studying techniques to combine stereo with the motion of the camera. Skifstad's dissertation proposes a new approach to recover depth information using known camera motion. This approach results in a robust technique for fast estimation of distances to objects in an image using only one translating camera. A very interesting aspect of the approach pursued by Skifstad is the method used to bypass the most difficult and computationally expensive step in using stereo or similar approaches for the vision-based depth esti mation. The correspondence problem has been the focus of research in most stereo approaches. Skifstad trades the correspondence problem for the known translational motion by using the fact that it is easier to detect single pixel disparities in a sequence of images rather than arbitrary disparities after two frames. A very attractive feature of this approach is that the computations required to detect single pixel disparities are local and hence can be easily parallelized. Another useful feature of the approach, particularly in naviga tion applications, is that the closer objects are detected earlier."
The two-volume set LNCS 7552 + 7553 constitutes the proceedings of the 22nd International Conference on Artificial Neural Networks, ICANN 2012, held in Lausanne, Switzerland, in September 2012. The 162 papers included in the proceedings were carefully reviewed and selected from 247 submissions. They are organized in topical sections named: theoretical neural computation; information and optimization; from neurons to neuromorphism; spiking dynamics; from single neurons to networks; complex firing patterns; movement and motion; from sensation to perception; object and face recognition; reinforcement learning; bayesian and echo state networks; recurrent neural networks and reservoir computing; coding architectures; interacting with the brain; swarm intelligence and decision-making; mulitlayer perceptrons and kernel networks; training and learning; inference and recognition; support vector machines; self-organizing maps and clustering; clustering, mining and exploratory analysis; bioinformatics; and time weries and forecasting.
This book constitutes the proceedings of the First International Workshop on Similarity Based Pattern Recognition, SIMBAD 2011, held in Venice, Italy, in September 2011. The 16 full papers and 7 poster papers presented were carefully reviewed and selected from 35 submissions. The contributions are organized in topical sections on dissimilarity characterization and analysis; generative models of similarity data; graph-based and relational models; clustering and dissimilarity data; applications; spectral methods and embedding.
This book constitutes the proceedings of the 12th International Conference on Simulation of Adaptive Behaviour, SAB 2012, held in Odense, Denmark, in August 2012. The 22 full papers as well as 22 poster papers included in this volume were carefully reviewed and selected from 66 submissions. They are organized in topical sections named: animat approach and methodology; perception and motor control; evolution; learning and adaptation, and collective and social behaviour.
This book constitutes the refereed proceedings of the First
International Workshop on Multimodal Brain Image Analysis, held in
conjunction with MICCAI 2011, in Toronto, Canada, in September
2011.
This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning in Medical Imaging, MLMI 2011, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 44 revised full papers presented were carefully reviewed and selected from 74 submissions. The papers focus on major trends in machine learning in medical imaging aiming to identify new cutting-edge techniques and their use in medical imaging.
Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden Markov models and Markov-chain or n-gram models. First, the text introduces the typical architecture of a Markov model-based handwriting recognition system, and familiarizes the reader with the essential theoretical concepts behind Markovian models. Then, the text reviews proposed solutions in the literature for open problems in applying Markov model-based approaches to automatic handwriting recognition.
This book constitutes the proceedings of the 5th International Conference on Nonlinear Speech Processing, NoLISP 2011, held in Las Palmas de Gran Canaria, Spain, in November 2011. The purpose of the workshop is to present and discuss new ideas, techniques and results related to alternative approaches in speech processing that may depart from the main stream. The 33 papers presented together with 2 keynote talks were carefully reviewed and selected for inclusion in this book. The topics of NOLISP 2011 were non-linear approximation and estimation; non-linear oscillators and predictors; higher-order statistics; independent component analysis; nearest neighbors; neural networks; decision trees; non-parametric models; dynamics of non-linear systems; fractal methods; chaos modeling; and non-linear differential equations.
This book constitutes the refereed proceedings of the 13th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2011, held in Ghent, Belgium, in August 2011. The 66 revised full papers presented were carefully reviewed and selected from 124 submissions. The papers are organized in topical sections on classification recognition, and tracking, segmentation, images analysis, image processing, video surveillance and biometrics, algorithms and optimization; and 3D, depth and scene understanding.
This book constitutes the refereed proceedings of the 9th International Workshop on Fuzzy Logic and Applications, WILF 2011 held in Trani, Italy in August 2011. The 34 revised full papers presented were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections on advances in theory of fuzzy sets, advances in fuzzy systems, advances in classification and clustering; and applications.
The development of technologies for the identi?cation of individuals has driven the interest and curiosity of many people. Spearheaded and inspired by the Bertillon coding system for the classi?cation of humans based on physical measurements, scientists and engineers have been trying to invent new devices and classi?cation systems to capture the human identity from its body measurements. One of the main limitations of the precursors of today's biometrics, which is still present in the vast majority of the existing biometric systems, has been the need to keep the device in close contact with the subject to capture the biometric measurements. This clearly limits the applicability and convenience of biometric systems. This book presents an important step in addressing this limitation by describing a number of methodologies to capture meaningful biometric information from a distance. Most materials covered in this book have been presented at the International Summer School on Biometrics which is held every year in Alghero, Italy and which has become a ?agship activity of the IAPR Technical Committee on Biometrics (IAPR TC4). The last four chapters of the book are derived from some of the best p- sentations by the participating students of the school. The educational value of this book is also highlighted by the number of proposed exercises and questions which will help the reader to better understand the proposed topics.
This book constitutes the refereed proceedings of the 7th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2011, held in New York, NY, USA. The 44 revised full papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on classification and decision theory, theory of learning, clustering, application in medicine, webmining and information mining; and machine learning and image mining.
From its early beginnings in the fifties and sixties, the field of neural networks has been steadily developing to become one of the most interdisciplinary areas of research within computer science. This volume contains selected papers from WIRN Vietri-98, the 10th Italian Workshop on Neural Nets, 21-23 May 1998, Vietri sul Mare, Salerno, Italy. This annual event, sponsored amongst others by the IEEE Neural Network Council and the INNS/SIG Italy, brings together the best of research from all over the world. The papers cover a range of key topics within neural networks, including pattern recognition, signal processing, hybrid systems, mathematical models, hardware and software design, and fuzzy techniques. It also includes two review talks on a "Morpho-Functional" " Model to Describe Variability Found at" "Hippocampal" " Synapses" and "Neural Networks and Speech" "Processing." By providing the reader with a comprehensive overview of recent research in this area, the volume makes a valuable contribution to the "Perspectives in Neural" "Computing" Series. |
![]() ![]() You may like...
Hybrid ADCs, Smart Sensors for the IoT…
Pieter Harpe, Kofi A. A. Makinwa, …
Hardcover
R5,412
Discovery Miles 54 120
News Search, Blogs and Feeds - A Toolkit
Lars Vage, Lars Iselid
Paperback
R1,412
Discovery Miles 14 120
Towards Ubiquitous Low-power Image…
Magnus Jahre, Diana Goehringer, …
Hardcover
R3,636
Discovery Miles 36 360
|