![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, free classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.
The two-volume set LNCS 7732 and 7733 constitutes the thoroughly refereed proceedings of the 19th International Conference on Multimedia Modeling, MMM 2012, held in Huangshan, China, in January 2013. The 30 revised regular papers, 46 special session papers, 20 poster session papers, and 15 demo session papers, and 6 video browser showdown were carefully reviewed and selected from numeroues submissions. The two volumes contain papers presented in the topical sections on multimedia annotation I and II, interactive and mobile multimedia, classification, recognition and tracking I and II, ranking in search, multimedia representation, multimedia systems, poster papers, special session papers, demo session papers, and video browser showdown.
This book constitutes the thoroughly refereed revised selected papers from the Second IAPR International Workshop, PSL 2013, held in Nanjing, China, in May 2013. The 10 papers included in this volume were carefully reviewed and selected from 26 submissions. Partially supervised learning is a rapidly evolving area of machine learning. It generalizes many kinds of learning paradigms including supervised and unsupervised learning, semi-supervised learning for classification and regression, transductive learning, semi-supervised clustering, multi-instance learning, weak label learning, policy learning in partially observable environments, etc.
A state-of-the-art view of recent developments in the use of artificial neural networks for analysing remotely sensed satellite data. Neural networks, as a new form of computational paradigm, appear well suited to many of the tasks involved in this image analysis. This book demonstrates a wide range of uses of neural networks for remote sensing applications and reports the views of a large number of European experts brought together as part of a concerted action supported by the European Commission.
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.
Human action analysis and recognition is a relatively mature field, yet one which is often not well understood by students and researchers. The large number of possible variations in human motion and appearance, camera viewpoint, and environment, present considerable challenges. Some important and common problems remain unsolved by the computer vision community. However, many valuable approaches have been proposed over the past decade, including the motion history image (MHI) method. This method has received significant attention, as it offers greater robustness and performance than other techniques. This work presents a comprehensive review of these state-of-the-art approaches and their applications, with a particular focus on the MHI method and its variants.
This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel's first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders. The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.
This book comprises the refereed proceedings of the International Conference, AIM/CCPE 2012, held in Bangalore, India, in April 2012. The papers presented were carefully reviewed and selected from numerous submissions and focus on the various aspects of research and development activities in computer science, information technology, computational engineering, mobile communication, control and instrumentation, communication system, power electronics and power engineering.
The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.
The two volumes LNCS 6553 and 6554 constitute the refereed post-proceedings of 7 workshops held in conjunction with the 11th European Conference on Computer Vision, held in Heraklion, Crete, Greece in September 2010. The 62 revised papers presented together with 2 invited talks were carefully reviewed and selected from numerous submissions. The first volume contains 26 revised papers and 2 invited talks selected from the following workshops: First International Workshop on Parts and Attributes; Third Workshop on Human Motion Understanding, Modeling, Capture and Animation; and International Workshop on Sign, Gesture and Activity (SGA 2010).
The two volumes LNCS 6553 and 6554 constitute the refereed post-proceedings of 7 workshops held in conjunction with the 11th European Conference on Computer Vision, held in Heraklion, Crete, Greece in September 2010. The 62 revised papers presented together with 2 invited talks were carefully reviewed and selected from numerous submissions. The second volume contains 34 revised papers selected from the following workshops: Workshop on color and Reflectance in Imaging and Computer Vision (CRICV 2010); Workshop on Media Retargeting (MRW 2010); Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual Environments (RMLE 2010); and Workshop on Computer Vision on GPUs (CVGPU 2010).
This two volume set (LNCS 8156 and 8157) constitutes the refereed proceedings of the 17th International Conference on Image Analysis and Processing, ICIAP 2013, held in Naples, Italy, in September 2013. The 162 papers presented were carefully reviewed and selected from 354 submissions. The papers aim at highlighting the connection and synergies of image processing and analysis with pattern recognition and machine learning, human computer systems, biomedical imaging and applications, multimedia interaction and processing, 3D computer vision, and understanding objects and scene.
Machine vision technology has revolutionised the process of automated inspection in manufacturing. The specialist techniques required for inspection of natural products, such as food, leather, textiles and stone is still a challenging area of research. Topological variations make image processing algorithm development, system integration and mechanical handling issues much more complex. The practical issues of making machine vision systems operate robustly in often hostile environments together with the latest technological advancements are reviewed in this volume. Features: - Case studies based on real-world problems to demonstrate the practical application of machine vision systems. - In-depth description of system components including image processing, illumination, real-time hardware, mechanical handling, sensing and on-line testing. - Systems-level integration of constituent technologies for bespoke applications across a variety of industries. - A diverse range of example applications that a system may be required to handle from live fish to ceramic tiles. Machine Vision for the Inspection of Natural Products will be a valuable resource for researchers developing innovative machine vision systems in collaboration with food technology, textile and agriculture sectors. It will also appeal to practising engineers and managers in industries where the application of machine vision can enhance product safety and process efficiency.
The presentation and interpretation of visual information is essential to almost every activity in human life and most endeavors of modern technology. This book examines the current status of what is known (and not known) about human vision, how human observers interpret visual data, and how to present such data to facilitate their interpretation and use. Written by experts who are able to cross disciplinary boundaries, the book provides an educational pathway through several models of human vision; describes how the visual response is analyzed and quantified; presents current theories of how the human visual response is interpreted; discusses the cognitive responses of human observers; and examines such applications as space exploration, manufacturing, surveillance, earth and air sciences, and medicine. The book is intended for everyone with an undergraduate-level background in science or engineering with an interest in visual science. This second edition has been brought up to date throughout and contains a new chapter on "Virtual reality and augmented reality in medicine."
This book constitutes the refereed proceedings of the Third International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2012, held in Bhubaneswar, India, in December 2012. The 96 revised full papers presented were carefully reviewed and selected from 310 initial submissions. The papers cover a wide range of topics in swarm, evolutionary, memetic and other intelligent computing algorithms and their real world applications in problems selected from diverse domains of science and engineering.
Brain imaging brings together the technology, methodology, research questions and approaches of a wide range of scientific fields including physics, statistics, computer science, neuroscience, biology, and engineering. Thus, methodological and technological advances that enable us to obtain measurements, examine relationships across observations, and link these data to neuroscientific hypotheses happen in a highly interdisciplinary environment. The dynamic field of machine learning with its modern approach to data mining provides many relevant approaches for neuroscience and enables the exploration of open questions. This state-of-the-art survey offers a collection of papers from the Workshop on Machine Learning and Interpretation in Neuroimaging, MLINI 2011, held at the 25th Annual Conference on Neural Information Processing, NIPS 2011, in the Sierra Nevada, Spain, in December 2011. Additionally, invited speakers agreed to contribute reviews on various aspects of the field, adding breadth and perspective to the volume. The 32 revised papers were carefully selected from 48 submissions. At the interface between machine learning and neuroimaging the papers aim at shedding some light on the state of the art in this interdisciplinary field. They are organized in topical sections on coding and decoding, neuroscience, dynamcis, connectivity, and probabilistic models and machine learning.
We describe in this book, bio-inspired models and applications of hybrid intel- gent systems using soft computing techniques for image analysis and pattern r- ognition based on biometrics and other information sources. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of classification methods and applications, which are basically papers that propose new models for classification to solve general pr- lems and applications. The second part contains papers with the main theme of modular neural networks in pattern recognition, which are basically papers using bio-inspired techniques, like modular neural networks, for achieving pattern r- ognition based on biometric measures. The third part contains papers with the theme of bio-inspired optimization methods and applications to diverse problems. The fourth part contains papers that deal with general theory and algorithms of bio-inspired methods, like neural networks and evolutionary algorithms. The fifth part contains papers on computer vision applications of soft computing methods. In the part of classification methods and applications there are 5 papers that - scribe different contributions on fuzzy logic and bio-inspired models with appli- tion in classification for medical images and other data.
Consumer electronics (CE) devices, providing multimedia entertainment and enabling communication, have become ubiquitous in daily life. However, consumer interaction with such equipment currently requires the use of devices such as remote controls and keyboards, which are often inconvenient, ambiguous and non-interactive. An important challenge for the modern CE industry is the design of user interfaces for CE products that enable interactions which are natural, intuitive and fun. As many CE products are supplied with microphones and cameras, the exploitation of both audio and visual information for interactive multimedia is a growing field of research. Collecting together contributions from an international selection of experts, including leading researchers in industry, this unique text presents the latest advances in applications of multimedia interaction and user interfaces for consumer electronics. Covering issues of both multimedia content analysis and human-machine interaction, the book examines a wide range of techniques from computer vision, machine learning, audio and speech processing, communications, artificial intelligence and media technology. Topics and features: introduces novel computationally efficient algorithms to extract semantically meaningful audio-visual events; investigates modality allocation in intelligent multimodal presentation systems, taking into account the cognitive impacts of modality on human information processing; provides an overview on gesture control technologies for CE; presents systems for natural human-computer interaction, virtual content insertion, and human action retrieval; examines techniques for 3D face pose estimation, physical activity recognition, and video summary quality evaluation; discusses the features that characterize the new generation of CE and examines how web services can be integrated with CE products for improved user experience. This book is an essential resource for researchers and practitioners from both academia and industry working in areas of multimedia analysis, human-computer interaction and interactive user interfaces. Graduate students studying computer vision, pattern recognition and multimedia will also find this a useful reference.
Based on a NATO Advanced Study Institute held in 1993, this book addresses recent advances in automatic speech recognition and speech coding. The book contains contributions by many of the most outstanding researchers from the best laboratories worldwide in the field. The contributions have been grouped into five parts: on acoustic modeling; language modeling; speech processing, analysis and synthesis; speech coding; and vector quantization and neural nets. For each of these topics, some of the best-known researchers were invited to give a lecture. In addition to these lectures, the topics were complemented with discussions and presentations of the work of those attending. Altogether, the reader is given a wide perspective on recent advances in the field and will be able to see the trends for future work.
This volume constitutes the refereed proceedings of the Second International Conference on Multimedia and Signal Processing, CMSP 2012, held in Shanghai, China, in December 2012. The 79 full papers included in the volume were selected from 328 submissions from 10 different countries and regions. The papers are organized in topical sections on computer and machine vision, feature extraction, image enhancement and noise filtering, image retrieval, image segmentation, imaging techniques & 3D imaging, pattern recognition, multimedia systems, architecture, and applications, visualization, signal modeling, identification & prediction, speech & language processing, time-frequency signal analysis.
The use of pattern recognition and classification is fundamental to
many of the automated electronic systems in use today. However,
despite the existence of a number of notable books in the field,
the subject remains very challenging, especially for the beginner.
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems' structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are also presented. The main learning algorithm adopted in the applications is the standard backpropagation (BP) algorithm. Widrow-Hoff learning, dynamic BP and evolutionary learning are also described.
The two volumes set, CCIS 383 and 384, constitutes the refereed proceedings of the 14th International Conference on Engineering Applications of Neural Networks, EANN 2013, held on Halkidiki, Greece, in September 2013. The 91 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers describe the applications of artificial neural networks and other soft computing approaches to various fields such as pattern recognition-predictors, soft computing applications, medical applications of AI, fuzzy inference, evolutionary algorithms, classification, learning and data mining, control techniques-aspects of AI evolution, image and video analysis, classification, pattern recognition, social media and community based governance, medical applications of AI-bioinformatics and learning.
This two volumes set LNAI 8102 and LNAI 8103 constitutes the refereed proceedings of the 6th International Conference on Intelligent Robotics and Applications, ICIRA 2013, held in Busan, South Korea, in September 2013. The 147 revised full papers presented were carefully reviewed and selected from 184 submissions. The papers discuss various topics from intelligent robotics, automation and mechatronics with particular emphasis on technical challenges associated with varied applications such as biomedical application, industrial automation, surveillance and sustainable mobility. |
![]() ![]() You may like...
Applications of Biosurfactant in…
Dr. Inamuddin, Charles Oluwaseun Adetunji
Paperback
R4,720
Discovery Miles 47 200
Production at the leading edge of…
Bernd-Arno Behrens, Alexander Brosius, …
Hardcover
R5,740
Discovery Miles 57 400
Programming with TensorFlow - Solution…
Kolla Bhanu Prakash, G. R. Kanagachidambaresan
Hardcover
R2,862
Discovery Miles 28 620
|