![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
This interdisciplinary volume presents a detailed overview of the latest advances and challenges remaining in the field of adaptive biometric systems. A broad range of techniques are provided from an international selection of pre-eminent authorities, collected together under a unified taxonomy and designed to be applicable to any pattern recognition system. Features: presents a thorough introduction to the concept of adaptive biometric systems; reviews systems for adaptive face recognition that perform self-updating of facial models using operational (unlabeled) data; describes a novel semi-supervised training strategy known as fusion-based co-training; examines the characterization and recognition of human gestures in videos; discusses a selection of learning techniques that can be applied to build an adaptive biometric system; investigates procedures for handling temporal variance in facial biometrics due to aging; proposes a score-level fusion scheme for an adaptive multimodal biometric system.
This book provides an introduction to fuzzy logic approaches useful in image processing. The authors start by introducing image processing tasks of low and medium level such as thresholding, enhancement, edge detection, morphological filters, and segmentation and shows how fuzzy logic approaches apply. The book is divided into two parts. The first includes vagueness and ambiguity in digital images, fuzzy image processing, fuzzy rule based systems, and fuzzy clustering. The second part includes applications to image processing, image thresholding, color contrast enhancement, edge detection, morphological analysis, and image segmentation. Throughout, they describe image processing algorithms based on fuzzy logic under methodological aspects in addition to applicative aspects. Implementations in java are provided for the various applications.
This book discusses all critical privacy and data protection aspects of biometric systems from a legal perspective. It contains a systematic and complete analysis of the many issues raised by these systems based on examples worldwide and provides several recommendations for a transnational regulatory framework. An appropriate legal framework is in most countries not yet in place. Biometric systems use facial images, fingerprints, iris and/or voice in an automated way to identify or to verify (identity) claims of persons. The treatise which has an interdisciplinary approach starts with explaining the functioning of biometric systems in general terms for non-specialists. It continues with a description of the legal nature of biometric data and makes a comparison with DNA and biological material and the regulation thereof. After describing the risks, the work further reviews the opinions of data protection authorities in relation to biometric systems and current and future (EU) law. A detailed legal comparative analysis is made of the situation in Belgium, France and the Netherlands. The author concludes with an evaluation of the proportionality principle and the application of data protection law to biometric data processing operations, mainly in the private sector. Pleading for more safeguards in legislation, the author makes several suggestions for a regulatory framework aiming at reducing the risks of biometric systems. They include limitations to the collection and storage of biometric data as well as technical measures, which could influence the proportionality of the processing. The text is supported by several figures and tables providing a summary of particular points of the discussion. The book also uses the 2012 biometric vocabulary adopted by ISO and contains an extensive bibliography and literature sources.
This book presents the first paradigm of social multimedia computing completely from the user perspective. Different from traditional multimedia and web multimedia computing which are content-centric, social multimedia computing rises under the participatory Web2.0 and is essentially user-centric. The goal of this book is to emphasize the user factor in facilitating effective solutions towards both multimedia content analysis, user modeling and customized user services. Advanced topics like cross-network social multimedia computing are also introduced as extensions and potential directions along this research line.
Andreas Bihlmaier describes a novel method to model dynamic spatial relations by machine learning techniques. The method is applied to the task of representing the tacit knowledge of a trained camera assistant in minimally-invasive surgery. The model is then used for intraoperative control of a robot that autonomously positions the endoscope. Furthermore, a modular robotics platform is described, which forms the basis for this knowledge-based assistance system. Promising results from a complex phantom study are presented.
This book describes the basic principles underlying the generation, coding, transmission and enhancement of speech and audio signals, including advanced statistical and machine learning techniques for speech and speaker recognition with an overview of the key innovations in these areas. Key research undertaken in speech coding, speech enhancement, speech recognition, emotion recognition and speaker diarization are also presented, along with recent advances and new paradigms in these areas.
This book constitutes the refereed proceedings of the 21st Annual Conference on Medical Image Understanding and Analysis, MIUA 2017, held in Edinburgh, UK, in July 2017. The 82 revised full papers presented were carefully reviewed and selected from 105 submissions. The papers are organized in topical sections on retinal imaging, ultrasound imaging, cardiovascular imaging, oncology imaging, mammography image analysis, image enhancement and alignment, modeling and segmentation of preclinical, body and histological imaging, feature detection and classification. The chapters 'Model-Based Correction of Segmentation Errors in Digitised Histological Images' and 'Unsupervised Superpixel-Based Segmentation of Histopathological Images with Consensus Clustering' are open access under a CC BY 4.0 license.
This, the 29th issue of the Transactions on Computational Science journal, is comprised of seven full papers focusing on the area of secure communication. Topics covered include weak radio signals, efficient circuits, multiple antenna sensing techniques, modes of inter-computer communication and fault types, geometric meshes, and big data processing in distributed environments.
"The Biometric Computing: Recognition & Registration" presents introduction of biometrics along with detailed analysis for identification and recognition methods. This book forms the required platform for understanding biometric computing and its implementation for securing target system. It also provides the comprehensive analysis on algorithms, architectures and interdisciplinary connection of biometric computing along with detailed case-studies for newborns and resolution spaces. The strength of this book is its unique approach starting with how biometric computing works to research paradigms and gradually moves towards its advancement. This book is divided into three parts that comprises basic fundamentals and definitions, algorithms and methodologies, and futuristic research and case studies. Features: A clear view to the fundamentals of Biometric Computing Identification and recognition approach for different human characteristics Different methodologies and algorithms for human identification using biometrics traits such as face, Iris, fingerprint, palm print, voiceprint etc. Interdisciplinary connection of biometric computing with the fields like deep neural network, artificial intelligence, Internet of Biometric Things, low resolution face recognition etc. This book is an edited volume by prominent invited researchers and practitioners around the globe in the field of biometrics, describes the fundamental and recent advancement in biometric recognition and registration. This book is a perfect research handbook for young practitioners who are intending to carry out their research in the field of Biometric Computing and will be used by industry professionals, graduate and researcher students in the field of computer science and engineering.
This book provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation.
This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.
This book constitutes the refereed proceedings of the 11th Chinese Conference on Image and Graphics Technologies and Applications, IGTA 2016, held in Beijing, China in July 2016. The 27 papers presented were carefully reviewed and selected from 69 submissions. They provide a forum for sharing progresses in the areas of image processing technology; image analysis and understanding; computer vision and pattern recognition; big data mining, computer graphics and VR; as well as image technology applications.
PATTERN CLASSIFICATION a unified view of statistical and neural approaches The product of years of research and practical experience in pattern classification, this book offers a theory-based engineering perspective on neural networks and statistical pattern classification. Pattern Classification sheds new light on the relationship between seemingly unrelated approaches to pattern recognition, including statistical methods, polynomial regression, multilayer perceptron, and radial basis functions. Important topics such as feature selection, reject criteria, classifier performance measurement, and classifier combinations are fully covered, as well as material on techniques that, until now, would have required an extensive literature search to locate. A full program of illustrations, graphs, and examples helps make the operations and general properties of different classification approaches intuitively understandable. Offering a lucid presentation of complex applications and their algorithms, Pattern Classification is an invaluable resource for researchers, engineers, and graduate students in this rapidly developing field.
A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures. This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to: - Why conventional implementation of the naive Bayesian approach does not work well in image classification? - How to deal with insufficient performance of hierarchical classification systems? - Is it possible to prevent an exhaustive search of the nearest neighbor in a database?
The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 79 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Features, learning, and classifiers Biometrics Data Stream Classification and Big Data Analytics Image processing and computer vision Medical applications Applications RGB-D perception: recent developments and applications This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be the as well researchers as students of computer science, artificial intelligence or robotics.
This book covers a wide range of local image descriptors, from the classical ones to the state of the art, as well as the burgeoning research topics on this area. The goal of this effort is to let readers know what are the most popular and useful methods in the current, what are the advantages and the disadvantages of these methods, which kind of methods is best suitable for their problems or applications, and what is the future of this area. What is more, hands-on exemplars supplied in this book will be of great interest to Computer Vision engineers and practitioners, as well as those want to begin their research in this area. Overall, this book is suitable for graduates, researchers and engineers in the related areas both as a learning text and as a reference book.
In den letzten Jahren hat sich der Workshop "Bildverarbeitung fur dieMedizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2016wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefungder Gesprache zwischen Wissenschaftlern, Industrie und Anwendern. DieBeitrage dieses Bandes - einige davon in englischer Sprache - umfassen alleBereiche der medizinischen Bildverarbeitung, insbesondere Bildgebungund -akquisition, Molekulare Bildgebung, Visualisierung und Animation, Anatomische Atlanten, Patientenindividuelle Simulation und Planung, Biomechanische Modellierung, Bildverarbeitung in der Telemedizin, Bildgestutzte Roboter, Chirurgische Simulatoren u.v.m.
This book constitutes the refereed post-conference proceedings of the First International Workshop on Spectral and Shape Analysis in Medical Imaging, SeSAMI 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 10 submitted full papers presented in this volume were carefully reviewed. The papers reflect the following topics: spectral methods; longitudinal methods; and shape methods.
This book constitutes thoroughly revised and selected papers from the 10th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2015, held in Berlin, Germany, in March 2015. VISIGRAPP comprises GRAPP, International Conference on Computer Graphics Theory and Applications; IVAPP, International Conference on Information Visualization Theory and Applications; and VISAPP, International Conference on Computer Vision Theory and Applications. The 23 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 529 submissions. The book also contains one invited talk in full-paper length. The regular papers were organized in topical sections named: computer graphics theory and applications; information visualization theory and applications; and computer vision theory and applications.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
This book takes a fresh look at biometrics and identity management, extending the dialogue beyond technical considerations, and exploring some of the broader societal and philosophical aspects surrounding the use of biometric applications. Features: presents a brief history of the development of biometrics, and describes some of the popularly held misconceptions surrounding the technology; investigates the challenges and possibilities of biometrics across third party infrastructures and on mobile computing devices; provides guidance on biometric systems design; explores the mechanisms necessary to enable identity intelligence, including logging mechanisms, data communications and data formats; discusses such usage issues as collaboration frameworks, and messaging and data translation; examines the impact of biometric technologies on society, covering issues of privacy and user factors; reviews the current situation in identity management, and predicts where these trends may take us in the future.
This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.
Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method.
This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning - instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics - two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis - a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing. |
![]() ![]() You may like...
Managing Software Process Evolution…
Marco Kuhrmann, Jurgen Munch, …
Hardcover
R3,682
Discovery Miles 36 820
Uses and Limitations of the AHP Method…
Nolberto Munier, Eloy Hontoria
Hardcover
R2,382
Discovery Miles 23 820
Emerging Technologies for Semantic Work…
Jorg Rech, Bjorn Decker, …
Hardcover
R4,977
Discovery Miles 49 770
Advances in Engineering Networks…
Rodolfo de Castro, Gerusa Gimenez
Hardcover
R6,365
Discovery Miles 63 650
History of Computing: Software Issues…
Ulf Hashagen, Reinhard Keil-Slawik, …
Hardcover
R1,686
Discovery Miles 16 860
14th International Symposium on Process…
Yoshiyuki Yamashita, Manabu Kano
Hardcover
R11,801
Discovery Miles 118 010
Memory Dump Analysis Anthology, Volume 7
Dmitry Vostokov, Software Diagnostics Institute
Hardcover
R1,204
Discovery Miles 12 040
Corporate Social Investment - A Guide To…
Setlogane Manchidi
Paperback
![]()
|