![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
Automatic pattern recognition has uses in science and engineering, social sciences and finance. This book examines data complexity and its role in shaping theory and techniques across many disciplines, probing strengths and deficiencies of current classification techniques, and the algorithms that drive them. The book offers guidance on choosing pattern recognition classification techniques, and helps the reader set expectations for classification performance.
This book provides a unique, in-depth discussion of multiview learning, one of the fastest developing branches in machine learning. Multiview Learning has been proved to have good theoretical underpinnings and great practical success. This book describes the models and algorithms of multiview learning in real data analysis. Incorporating multiple views to improve the generalization performance, multiview learning is also known as data fusion or data integration from multiple feature sets. This self-contained book is applicable for multi-modal learning research, and requires minimal prior knowledge of the basic concepts in the field. It is also a valuable reference resource for researchers working in the field of machine learning and also those in various application domains.
In the age of e-society, handwritten signature processing is an enabling technology in a multitude of fields in the "digital agenda" of many countries, ranging from e-health to e-commerce, from e-government to e-justice, from e-democracy to e-banking, and smart cities. Handwritten signatures are very complex signs; they are the result of an elaborate process that depends on the psychophysical state of the signer and the conditions under which the signature apposition process occurs. Notwithstanding, recent efforts from academies and industries now make possible the integration of signature-based technologies into other standard equipment to form complete solutions that are able to support the security requirements of today's society.Advances in Digital Handwritten Signature Processing primarily provides an update on the most fascinating and valuable researches in the multifaceted field of handwritten signature analysis and processing. The chapters within also introduce and discuss critical aspects and precious opportunities related to the use of this technology, as well as highlight fundamental theoretical and applicative aspects of the field. This book contains papers by well-recognized and active researchers and scientists, as well as by engineers and commercial managers working for large international companies in the field of signature-based systems for a wide range of applications and for the development of e-society.This publication is devoted to both researchers and experts active in the field of biometrics and handwriting forensics, as well as professionals involved in the development of signature-based solutions for advanced applications in medicine, finance, commerce, banking, public and private administrations, etc. Handwritten Signature Processing may also be used as an advanced textbook by graduate students.
The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA). Particularly, TA is being used either by academics as an "economic test" of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.
This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.
Pattern recognition, image processing and computer vision are closely linked areas which have seen enormous progress in the last fifty years. Their applications in our daily life, commerce and industry are growing even more rapidly than theoretical advances. Hence, the need for a new handbook in pattern recognition and computer vision every five or six years as envisioned in 1990 is fully justified and valid.The book consists of three parts: (1) Pattern recognition methods and applications; (2) Computer vision and image processing; and (3) Systems, architecture and technology. This book is intended to capture the major developments in pattern recognition and computer vision though it is impossible to cover all topics.The chapters are written by experts from many countries, fully reflecting the strong international research interests in the areas. This fifth edition will complement the previous four editions of the book.
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
The chapters in this volume were presented at the July-August 2008 NATO Advanced Study Institute on Unexploded Ordnance Detection and Mitigation. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. For the ninth time we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction between world-renowned scientists from the usually disparate communities of pure mathematicians and applied scientists which occurred at our eight previous ASI's continued at this meeting. The detection and neutralization of unexploded ordnance (UXO) has been of major concern for very many decades; at least since the First World war. UXO continues to be the subject of intensive research in many ?elds of science, incl- ing mathematics, signal processing (mainly radar and sonar) and chemistry. While today's headlines emphasize the mayhem resulting from the placement of imp- vised explosive devices (IEDs), humanitarian landmine clearing continues to draw signi?cant global attention as well. In many countries of the world, landmines threaten the population and hinder reconstruction and fast, ef?cient utilization of large areas of the mined land in the aftermath of military con?icts.
This book serves as a general introduction to the area of image processing as well as to data-parallel processing. It covers a number of standard algorithms in image processing and describes their parallel implementation in a practical "hands-on" approach: Each algorithm is accompanied by numerous diagrams and program source code. Combining text, graphics, and programs is a new approach in presenting the subject matter, which will help students to better grasp the concepts - irrespective of the programming language used.The programming language chosen for all examples is a structured parallel programming language which is ideal for educational purposes. It has a number of advantages over C, and since all image processing tasks are inherently parallel, using a parallel language for presentation actually simplifies the subject matter, resulting in shorter source codes and better understanding. Sample programs and a free compiler are available on the Web.
On August 20, 2015, a symposium at Lawrence Livermore National Laboratory was held in honor of Berni J. Alder's 90th birthday. Many of Berni's scientific colleagues and collaborators, former students, and post-doctoral fellows came to celebrate and honor Berni and the ground-breaking scientific impact of his many discoveries. This proceedings volume includes contributions from Berni's collaborators and covers a range of topics, including the melting transition in the 2D hard disk system, non-equilibrium fluid relaxation, the role of fluctuations in hydrodynamics, glass transitions, molecular dynamics of dense fluids, shock-wave and finite-strain equation of state relationships, and applications of quantum mechanics in pattern recognition.
This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of "black-box" in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications. This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making. This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.
This book focuses on a wide range of breakthroughs related to digital biometrics and forensics. The authors introduce the concepts, techniques, methods, approaches and trends needed by cybersecurity specialists and educators for keeping current their biometrics and forensics knowledge. Furthermore, the book provides a glimpse of future directions where biometrics and forensics techniques, policies, applications, and theories are headed. Topics include multimodal biometrics, soft biometrics, mobile biometrics, vehicle biometrics, vehicle forensics, integrity verification of digital content, people identification, biometric-based cybercrime investigation, among others. The book is a rich collection of carefully selected and reviewed manuscripts written by diverse digital biometrics and forensics experts in the listed fields and edited by prominent biometrics and forensics researchers and specialists.
As Nixon's unpopularity increased during Watergate, his nose and jowls grew to impossible proportions in published caricatures. Yet the caricatures remained instantly recognizable. Caricatures can even be superportraits, with the paradoxical quality of being more like the face than the face itself. How can we recognize such distorted images? Do caricatures derive their power from some special property of a face recognition system or from some more general property of recognition systems? What kind of mental representations and recognition processes make caricatures so effective? What can the power of caricatures tell us about recognition? In seeking to answer these questions, the author assembles clues from a variety of sources: the invention and development of caricatures by artists, the exploitation of extreme signals in animal communication systems, and studies of how humans, other animals and connectionist recognition systems respond to caricatures. Several conclusions emerge. The power of caricatures is ubiquitous. Caricatures can be superportraits for humans, other animals and computer recognition systems. They are effective for a variety of stimuli, not just faces. They are effective whether objects are mentally represented as deviations from a norm or average member of the class, or as absolute feature values on a set of dimensions. Exaggeration of crucial norm-deviation features, distinctiveness, and resemblance to caricatured memory traces are all potential sources of the power of caricature. Superportraits will be of interest to students of cognitive psychology, perception, the visual arts and animal behavior.
This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics - neural networks, support vector machines and decision trees - attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter.
With the increasing concerns on security breaches and transaction fraud, highly reliable and convenient personal verification and identification technologies are more and more requisite in our social activities and national services. Biometrics, used to recognize the identity of an individual, are gaining ever-growing popularity in an extensive array of governmental, military, forensic, and commercial security applications.""Advanced Biometric Recognition Technologies: Discriminant Criterion and Fusion Applications"" focuses on two kinds of advanced biometric recognition technologies, biometric data discrimination and multi-biometrics, while systematically introducing recent research in developing effective biometric recognition technologies. Organized into three main sections, this cutting-edge book explores advanced biometric data discrimination technologies, describes tensor-based biometric data discrimination technologies, and develops the fundamental conception and categories of multi-biometrics technologies.
In recent years, libraries and archives all around the world have increased their efforts to digitize historical manuscripts. To integrate the manuscripts into digital libraries, pattern recognition and machine learning methods are needed to extract and index the contents of the scanned images.The unique compendium describes the outcome of the HisDoc research project, a pioneering attempt to study the whole processing chain of layout analysis, handwriting recognition, and retrieval of historical manuscripts. This description is complemented with an overview of other related research projects, in order to convey the current state of the art in the field and outline future trends.This must-have volume is a relevant reference work for librarians, archivists and computer scientists.
This book presents a thorough and detailed guide to image registration, outlining the principles and reviewing state-of-the-art tools and methods. The book begins by identifying the components of a general image registration system, and then describes the design of each component using various image analysis tools. The text reviews a vast array of tools and methods, not only describing the principles behind each tool and method, but also measuring and comparing their performances using synthetic and real data. Features: discusses similarity/dissimilarity measures, point detectors, feature extraction/selection and homogeneous/heterogeneous descriptors; examines robust estimators, point pattern matching algorithms, transformation functions, and image resampling and blending; covers principal axes methods, hierarchical methods, optimization-based methods, edge-based methods, model-based methods, and adaptive methods; includes a glossary, an extensive list of references, and an appendix on PCA.
This practically-oriented textbook introduces the fundamentals of designing digital surveillance systems powered by intelligent computing techniques. The text offers comprehensive coverage of each aspect of the system, from camera calibration and data capture, to the secure transmission of surveillance data, in addition to the detection and recognition of individual biometric features and objects. The coverage concludes with the development of a complete system for the automated observation of the full lifecycle of a surveillance event, enhanced by the use of artificial intelligence and supercomputing technology. This updated third edition presents an expanded focus on human behavior analysis and privacy preservation, as well as deep learning methods. Topics and features: contains review questions and exercises in every chapter, together with a glossary; describes the essentials of implementing an intelligent surveillance system and analyzing surveillance data, including a range of biometric characteristics; examines the importance of network security and digital forensics in the communication of surveillance data, as well as issues of issues of privacy and ethics; discusses the Viola-Jones object detection method, and the HOG algorithm for pedestrian and human behavior recognition; reviews the use of artificial intelligence for automated monitoring of surveillance events, and decision-making approaches to determine the need for human intervention; presents a case study on a system that triggers an alarm when a vehicle fails to stop at a red light, and identifies the vehicle's license plate number; investigates the use of cutting-edge supercomputing technologies for digital surveillance, such as FPGA, GPU and parallel computing. This concise and accessible work serves as a classroom-tested textbook for graduate-level courses on intelligent surveillance. Researchers and engineers interested in entering this area will also find the book suitable as a helpful self-study reference.
In recent years, there has been a growing interest in the fields of pattern recognition and machine vision in academia and industries. New theories have been developed, with new design of technology and systems in both hardware and software. They are widely applied to our daily life to solve real problems in such diverse areas as science, engineering, agriculture, e-commerce, education, robotics, government, medicine, games and animation, medical imaging analysis and diagnosis, military, and national security. The foundation of all this field can be traced back to the late Prof. King-Sun Fu, one of the founding fathers of pattern recognition, who, with visionary insight founded the International Association for Pattern Recognition around 1980. In the almost 30 years since then, the world has witnessed the rapid growth and development of this field. It is probably true to say that most people are affected by, or use applications of pattern recognition in daily life. Today, on the eve of 25th anniversary of the unfortunate and untimely passing of Prof. Fu, we are proud to produce this volume of collected works from world renowned professionals and experts in pattern recognition and machine vision, in honor and memory of the late Prof. King-Sun Fu. We hope this book will help promote further the course, not only of fundamental principles, systems and technologies, but also its vast range of applications to help in solving problems in daily life. Contents Basic Foundations of Pattern Recognition and Artificial Intelligence, Methodologies of Machine Vision and Image Processing, Intelligent Pattern Recognition Systems, 3-D Object Pattern Analysis, Modelling and Simulation, Analysis of DNA Microarray Gene Expression Data based on Pattern Recognition Methods, PRMV Applications.
Patterns are becoming the focal point of many areas of scientific endeavour in recent years owing to the progress of computer science, laboratory experiments and observations, and analytical tools. This book brings together articles by the leading experts in this field. The following topics are discussed in this volume: current status of pattern research with emphasis on real phenomena and new theoretical concepts; interdisciplinary subjects involving Statistical Physics, Condensed Matter Physics, Fluid Mechanics, Nonequilibrium and Nonlinear Phenomena.
This book constitutes the refereed proceedings of the 5th International Conference on Intelligence Science, ICIS 2022, held in Xi'an, China, in August 2022. The 41 full and 5 short papers presented in this book were carefully reviewed and selected from 85 submissions. They were organized in topical sections as follows: Brain cognition; machine learning; data intelligence; language cognition; remote sensing images; perceptual intelligence; wireless sensor; and medical artificial intelligence.
The computational methods of bioinformatics are being used more and more to process the large volume of current biological data. Promoting an understanding of the underlying biology that produces this data, Pattern Discovery in Bioinformatics: Theory and Algorithms provides the tools to study regularities in biological data. Taking a systematic approach to pattern discovery, the book supplies sound mathematical definitions and efficient algorithms to explain vital information about biological data. It explores various data patterns, including strings, clusters, permutations, topology, partial orders, and boolean expressions. Each of these classes captures a different form of regularity in the data, providing possible answers to a wide range of questions. The book also reviews basic statistics, including probability, information theory, and the central limit theorem. This self-contained book provides a solid foundation in computational methods, enabling the solution of difficult biological questions.
Utilizing the ubiquity of social media in modern society, the emerging interdisciplinary field of social computing offers the promise of important human-centered applications. "Human-Centered Social Media Analytics" provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. The collected chapters present a range of different viewpoints examining the various possibilities and challenges to machine understanding of humans in a social context. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation; requires no prior background knowledge of the area. This authoritative text/reference will be a valuable resource for researchers and graduate students interested in social media and networking, computer vision and biometrics, big data, and HCI. Practitioners in these fields, as well as in image processing and computer graphics, will also find the book of great interest. |
![]() ![]() You may like...
Proceeding of International Conference…
Subhash Bhalla, Peter Kwan, …
Hardcover
R5,660
Discovery Miles 56 600
Sparse Grids and Applications - Munich…
Hans-Joachim Bungartz, Jochen Garcke, …
Hardcover
R5,110
Discovery Miles 51 100
Numerical Modeling and Computer…
Dragan M. Cvetkovic, Gunvant A. Birajdar
Hardcover
R3,327
Discovery Miles 33 270
Proceedings of International Conference…
Valentina E. Balas, Aboul Ella Hassanien, …
Hardcover
R5,760
Discovery Miles 57 600
Advances in Intelligent Manufacturing…
Grzegorz Krolczyk, Chander Prakash, …
Hardcover
R6,327
Discovery Miles 63 270
Analyzing Risk through Probabilistic…
Dariusz Jacek Jakobczak
Hardcover
R6,179
Discovery Miles 61 790
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,658
Discovery Miles 56 580
Petri Nets in Science and Engineering
Raul Campos-Rodriguez, Mildreth Alcaraz-Mejia
Hardcover
R3,321
Discovery Miles 33 210
|