![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
The book covers a comprehensive overview of the theory, methods, applications and tools of cognition and recognition. The book is a collection of best selected papers presented in the International Conference on Cognition and Recognition 2016 (ICCR 2016) and helpful for scientists and researchers in the field of image processing, pattern recognition and computer vision for advance studies. Nowadays, researchers are working in interdisciplinary areas and the proceedings of ICCR 2016 plays a major role to accumulate those significant works at one place. The chapters included in the proceedings inculcates both theoretical as well as practical aspects of different areas like nature inspired algorithms, fuzzy systems, data mining, signal processing, image processing, text processing, wireless sensor networks, network security and cellular automata.
Designed for information systems professionals, including IS, DP, MIS, LAN, and systems managers, this text provides a source of introductory information for those involved with decision-making processes related to information systems. Suitable as a University course text in MIS programs, the book also covers the subject in sufficient detail for the more technically orientated. This text describes how to reap the benefits of improved efficiency and productivity through the use of document imaging systems that reduce access time and enhance document integrity.
Optical Character Recognition (OCR) is a key technology enabling access to digital text data. This technique is especially valuable for Arabic scripts, for which there has been very little digital access. Arabic script is widely used today. It is estimated that approximately 200 million people use Arabic as a first language, and the Arabic script is shared by an additional 13 languages, making it the second most widespread script in the world. However, Arabic scripts pose unique challenges for OCR systems that cannot be simply adapted from existing Latin character-based processing techniques. This comprehensive "Guide to OCR for Arabic Scripts" is the first book of its kind, specifically devoted to this emerging field. Presenting state-of-the-art research from an international selection of pre-eminent authorities, the book reviews techniques and algorithms for the recognition of both handwritten and printed Arabic scripts. Many of these techniques can also be applied to other scripts, serving as an inspiration to all groups working in the area of OCR. Topics and features: contains contributions from the leading researchers in the field; with a Foreword by Professor Bente Maegaard of the University of Copenhagen; presents a detailed overview of Arabic character recognition technology, covering a range of different aspects of pre-processing and feature extraction; reviews a broad selection of varying approaches, including HMM-based methods and a recognition system based on multidimensional recurrent neural networks; examines the evaluation of Arabic script recognition systems, discussing data collection and annotation, benchmarking strategies, and handwriting recognition competitions; describes numerous applications of Arabic script recognition technology, from historical Arabic manuscripts to online Arabic recognition. This authoritative work is an essential reference for all researchers and graduate students interested in OCR technology and methodology in general, and in Arabic scripts in particular.
This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.
This book develops a conceptual understanding of Artificial Intelligence (AI), Deep Learning and Machine Learning in the truest sense of the word. It is an earnest endeavor to unravel what is happening at the algorithmic level, to grasp how applications are being built and to show the long adventurous road in the future. An Intuitive Exploration of Artificial Intelligence offers insightful details on how AI works and solves problems in computer vision, natural language understanding, speech understanding, reinforcement learning and synthesis of new content. From the classic problem of recognizing cats and dogs, to building autonomous vehicles, to translating text into another language, to automatically converting speech into text and back to speech, to generating neural art, to playing games, and the author's own experience in building solutions in industry, this book is about explaining how exactly the myriad applications of AI flow out of its immense potential. The book is intended to serve as a textbook for graduate and senior-level undergraduate courses in AI. Moreover, since the book provides a strong geometrical intuition about advanced mathematical foundations of AI, practitioners and researchers will equally benefit from the book.
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussed in the book.
This book describes a range of new biometric technologies, such as high-resolution fingerprint, finger-knuckle-print, multi-spectral backhand, 3D fingerprint, tongueprint, 3D ear, and multi-spectral iris technologies. Further, it introduces readers to efficient feature extraction, matching and fusion algorithms, in addition to developing potential systems of its own. These advanced biometric technologies and methods are divided as follows: 1. High-Resolution Fingerprint Recognition; 2. Finger-Knuckle-Print Verification; 3. Other Hand-Based Biometrics; and 4. New Head-Based Biometrics. Traditional biometric technologies, such as fingerprint, face, iris, and palmprint, have been extensively studied and addressed in many research books. However, all of these technologies have their own advantages and disadvantages, and there is no single type of biometric technology that can be used for all applications. Many new biometric technologies have been developed in recent years, especia lly in response to new applications. The contributions gathered here focus on how to develop a new biometric technology based on the requirements of essential applications, and how to design efficient algorithms that yield better performance.
This book introduces novel research targeting technical aspects of protecting information security and establishing trust in the digital space. New paradigms, and emerging threats and solutions are presented in topics such as application security and threat management; modern authentication paradigms; digital fraud detection; social engineering and insider threats; cyber threat intelligence; intrusion detection; behavioral biometrics recognition; hardware security analysis. The book presents both the important core and the specialized issues in the areas of protection, assurance, and trust in information security practice. It is intended to be a valuable resource and reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners.
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers.
The book is organized so as to address in separate sections first the preparatory topics of medicine (clinical and epidemiological), science in general, and statistics (mathematical); then topics of epidemiological research proper; and, finally, topics of 'meta-epidemiological' clinical research. In those two main sections, a further grouping is based on the distraction between objects and methods of study. In this framework, the particular topics are addressed both descriptively and quasi-prescriptively, commonly with a number of explicatory annotations. This book is intended to serve as a handbook for whomever is, in whatever way, concerned with epidemiological or 'meta-epidemiological' clinical research. But besides this, it is also intended to serve as a textbook for students in introductory courses on 'epidemiological' research - to which end there is a suggested hierarchy of the concepts that might reasonably be covered.
This book presents an original combination of three well-known methodological approaches for nonlinear data analysis: recurrence, networks, and fuzzy logic. After basic concepts of these three approaches are introduced, this book presents recently developed methods known as fuzzy recurrence plots and fuzzy recurrence networks. Computer programs written in MATLAB, which implement the basic algorithms, are included to facilitate the understanding of the developed ideas. Several applications of these techniques to biomedical problems, ranging from cancer and neurodegenerative disease to depression, are illustrated to show the potential of fuzzy recurrence methods. This book opens a new door to theorists in complex systems science as well as specialists in medicine, biology, engineering, physics, computer science, geosciences, and social economics to address issues in experimental nonlinear signal and data processing.
This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good inter class discrimination. A Bayesian model of visual attention is described which is effective in handling complex background problem in hand posture recognition. The book provides qualitative and quantitative performance comparisons for the algorithms outlined, with other standard methods in machine learning and computer vision. The book is self-contained with several figures, charts, tables and equations helping the reader to understand the material presented without instruction.
The past decades have seen significant improvements in 3D imaging where the related techniques and technologies have advanced to a mature state. These exciting developments have sparked increasing interest in the challenges and opportunities afforded by 3D sensing. As a consequence, the emerging area of safety and security related imaging incorporates these important new technologies beyond the limitations of 2D image processing.This book presents the thoroughly revised versions of lectures given by leading researchers during the Workshop on Advanced 3D Imaging for Safety and Security in conjunction with the International Conference on Computer Vision and Pattern Recognition CVPR 2005, held in San Diego, CA, USA in June 2005.It covers the current state of the art in 3D imaging for safety and security.
'A must-read' New Scientist 'Fascinating' Greta Thunberg 'Enthralling' George Monbiot 'Brilliant' Philip Hoare A thrilling investigation into the pioneering world of animal communication, where big data and artificial intelligence are changing our relationship with animals forever In 2015, wildlife filmmaker Tom Mustill was whale watching when a humpback breached onto his kayak and nearly killed him. After a video clip of the event went viral, Tom found himself inundated with theories about what happened. He became obsessed with trying to find out what the whale had been thinking and sometimes wished he could just ask it. In the process of making a film about his experience, he discovered that might not be such a crazy idea. This is a story about the pioneers in a new age of discovery, whose cutting-edge developments in natural science and technology are taking us to the brink of decoding animal communication - and whales, with their giant mammalian brains and sophisticated vocalisations, offer one of the most realistic opportunities for us to do so. Using 'underwater ears,' robotic fish, big data and machine intelligence, leading scientists and tech-entrepreneurs across the world are working to turn the fantasy of Dr Dolittle into a reality, upending much of what we know about these mysterious creatures. But what would it mean if we were to make contact? And with climate change threatening ever more species with extinction, would doing so alter our approach to the natural world? Enormously original and hugely entertaining, How to Speak Whale is an unforgettable look at how close we truly are to communicating with another species - and how doing so might change our world beyond recognition.
This book introduces a new cyberphysical system that combines clinical and basic neuroscience research with advanced data analysis and medical management tools for developing novel applications for the management of epilepsy. The authors describe the algorithms and architectures needed to provide ambulatory, diagnostic and long-term monitoring services, through multi parametric data collection. Readers will see how to achieve in-hospital quality standards, addressing conventional "routine" clinic-based service purposes, at reduced cost, enhanced capability and increased geographical availability. The cyberphysical system described in this book is flexible, can be optimized for each patient and is demonstrated in several case studies.
This volume introduces the fundamental concepts and tools involved in the design and implementation of object recognition systems. Divided into three parts, it first introduces the topic and covers the acquisition of images, then details 3-D object reconstruction, modelling and matching, and finally describes typical recognition systems using case studies. Key features include: Extensive literature surveys of state-of-the-art systems An FTP site from which readers can obtain the MATLAB codes used to generate some of the results found in the text: ftp://ftp.springer.de/pub/cs/object_recognition/ Object Recognition will be essential reading for research scientists, advanced undergraduate and postgraduate students in computer vision, image processing and pattern classification. It will also be of interest to practitioners working in the field of computer vision.
This book presents the latest developments in biometrics technologies and reports on new approaches, methods, findings, and technologies developed or being developed by the research community and the industry. The book focuses on introducing fundamental principles and concepts of key enabling technologies for biometric systems applied for both physical and cyber security. The authors disseminate recent research and developing efforts in this area, investigate related trends and challenges, and present case studies and examples such as fingerprint, face, iris, retina, keystroke dynamics, and voice applications . The authors also investigate the advances and future outcomes in research and development in biometric security systems. The book is applicable to students, instructors, researchers, industry practitioners, and related government agencies staff. Each chapter is accompanied by a set of PowerPoint slides for use by instructors.
The classification of patterns is an important area of research which is central to all pattern recognition fields, including speech, image, robotics, and data analysis. Neural networks have been used successfully in a number of these fields, but so far their application has been based on a "black box approach", with no real understanding of how they work.In this book, Sarunas Raudys - an internationally respected researcher in the area - provides an excellent mathematical and applied introduction to how neural network classifiers work and how they should be used to optimal effect. Among the topics covered are:- Different types of neural network classifiers;- A taxonomy of pattern classification algorithms;- Performance capabilities and measurement procedures;- Which features should be extracted from raw data for the best classification results.This book will provide essential reading for anyone researching or studying relevant areas of pattern recognition (such as image processing, speech recognition, robotics, and multimedia). It will also be of interest to anyone studing or researching in applied neural networks.
This book presents works detailing the application of processing and visualization techniques for analyzing the Earth's subsurface. The topic of the book is interactive data processing and interactive 3D visualization techniques used on subsurface data. Interactive processing of data together with interactive visualization is a powerful combination which has in the recent years become possible due to hardware and algorithm advances in. The combination enables the user to perform interactive exploration and filtering of datasets while simultaneously visualizing the results so that insights can be made immediately. This makes it possible to quickly form hypotheses and draw conclusions. Case studies from the geosciences are not as often presented in the scientific visualization and computer graphics community as e.g., studies on medical, biological or chemical data. This book will give researchers in the field of visualization and computer graphics valuable insight into the open visualization challenges in the geosciences, and how certain problems are currently solved using domain specific processing and visualization techniques. Conversely, readers from the geosciences will gain valuable insight into relevant visualization and interactive processing techniques. Subsurface data has interesting characteristics such as its solid nature, large range of scales and high degree of uncertainty, which makes it challenging to visualize with standard methods. It is also noteworthy that parallel fields of research have taken place in geosciences and in computer graphics, with different terminology when it comes to representing geometry, describing terrains, interpolating data and (example-based) synthesis of data. The domains covered in this book are geology, digital terrains, seismic data, reservoir visualization and CO2 storage. The technologies covered are 3D visualization, visualization of large datasets, 3D modelling, machine learning, virtual reality, seismic interpretation and multidisciplinary collaboration. People within any of these domains and technologies are potential readers of the book.
Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu ments pointless because none of them would step back from their territory. And stiH, discussions burst out from a single sparkle like a conference pa per or a message on some fuzzy-mail newsgroup. Here is an excerpt from an e-mail messagepostedin1993tofuzzy-mail@vexpert. dbai. twvien. ac. at. by somebody who signed "Dave". , . . . Why then the "logic" in "fuzzy logic"? I don't think anyone has successfully used fuzzy sets for logical inference, nor do I think anyone wiH. In my admittedly neophyte opinion, "fuzzy logic" is a misnomer, an oxymoron. (1 would be delighted to be proven wrong on that. ) . . . I carne to the fuzzy literature with an open mind (and open wal let), high hopes and keen interest. I am very much disiHusioned with "fuzzy" per se, but I did happen across some extremely interesting things along the way. " Dave, thanks for the nice quote! Enthusiastic on the surface, are not many of us suspicious deep down? In some books and journals the word fuzzy is religiously avoided: fuzzy set theory is viewed as a second-hand cheap trick whose aim is nothing else but to devalue good classical theories and open up the way to lazy ignorants and newcomers.
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
In the past several years, there have been significant technological advances in the field of crisis response. However, many aspects concerning the efficient collection and integration of geo-information, applied semantics and situation awareness for disaster management remain open. Improving crisis response systems and making them intelligent requires extensive collaboration between emergency responders, disaster managers, system designers and researchers alike. To facilitate this process, the Gi4DM (GeoInformation for Disaster Management) conferences have been held regularly since 2005. The events are coordinated by the Joint Board of Geospatial Information Societies (JB GIS) and ICSU GeoUnions. This book presents the outcomes of the Gi4DM 2018 conference, which was organised by the ISPRS-URSI Joint Working Group ICWG III/IVa: Disaster Assessment, Monitoring and Management and held in Istanbul, Turkey on 18-21 March 2018. It includes 12 scientific papers focusing on the intelligent use of geo-information, semantics and situation awareness. |
![]() ![]() You may like...
Strategies and Tips from a Divorce Coach…
Jennifer Warren Medwin
Hardcover
R566
Discovery Miles 5 660
|