![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
This three-volume set LNCS 10361, LNCS 10362, and LNAI 10363 constitutes the refereed proceedings of the 13th International Conference on Intelligent Computing, ICIC 2017, held in Liverpool, UK, in August 2017. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. This second volume of the set comprises 74 papers. The papers are organized in topical sections such as Pattern Recognition; Image Processing; Virtual Reality and Human-Computer Interaction; Healthcare Informatics Theory and Methods; Genetic Algorithms; Blind Source Separation; Intelligent Fault Diagnosis; Machine Learning; Knowledge Discovery and Data Mining; Gene Expression Array Analysis; Systems Biology; Modeling, Simulation, and Optimization of Biological Systems; Intelligent Computing in Computational Biology; Computational Genomics; Computational Proteomics; Gene Regulation Modeling and Analysis; SNPs and Haplotype Analysis; Protein-Protein Interaction Prediction; Protein Structure and Function Prediction; Next-Gen Sequencing and Metagenomics; Structure Prediction and Folding; Biomarker Discovery; Applications of Machine Learning Techniques to Computational Proteomics, Genomics, and Biological Sequence Analysis; Biomedical Image Analysis; Human-Machine Interaction: Shaping Tools Which Will Shape Us; Protein and Gene Bioinformatics: Analysis, Algorithms and Applications; Special Session on Computer Vision based Navigation; Neural Networks: Theory and Application.
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.
This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.
This book presents a systematic study of visual pattern discovery, from unsupervised to semi-supervised manner approaches, and from dealing with a single feature to multiple types of features. Furthermore, it discusses the potential applications of discovering visual patterns for visual data analytics, including visual search, object and scene recognition. It is intended as a reference book for advanced undergraduates or postgraduate students who are interested in visual data analytics, enabling them to quickly access the research world and acquire a systematic methodology rather than a few isolated techniques to analyze visual data with large variations. It is also inspiring for researchers working in computer vision and pattern recognition fields. Basic knowledge of linear algebra, computer vision and pattern recognition would be helpful to readers.
The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.
A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. * Surveys the development of techniques and approaches on pattern recognition in biomolecular data * Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks * Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.
This book constitutes the proceedings of the 6th International Conference on Analysis of Images, Social Networks and Texts, AIST 2017, held in Moscow, Russia, in July 2017. The 29 full papers and 8 short papers were carefully reviewed and selected from 127 submissions. The papers are organized in topical sections on natural language processing; general topics of data analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behavior through event data; social network analysis.
In den letzten Jahren hat sich der Workshop "Bildverarbeitung fur die Medizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2017 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gesprache zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitrage dieses Bandes - einige davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere Bildgebung und -akquisition, Maschinelles Lernen, Bildsegmentierung und Bildanalyse, Visualisierung und Animation, Zeitreihenanalyse, Computerunterstutzte Diagnose, Biomechanische Modellierung, Validierung und Qualitatssicherung, Bildverarbeitung in der Telemedizin u.v.m.
This three volume set, CCIS 771, 772, 773, constitutes the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2017, held in Tianjin, China, in October 2017. The total of 174 revised full papers presented in three volumes were carefully reviewed and selected from 465 submissions. The papers are organized in the following topical sections: biological vision inspired visual method; biomedical image analysis; computer vision applications; deep neural network; face and posture analysis; image and video retrieval; image color and texture; image composition; image quality assessment and analysis; image restoration; image segmentation and classification; image-based modeling; object detection and classification; object identification; photography and video; robot vision; shape representation and matching; statistical methods and learning; video analysis and event recognition; visual salient detection.
This book constitutes the refereed proceedings of the 13th International Conference on Pattern Recognition and Information Processing, PRIP 2016, held in Minsk, Belarus, in October 2016. The 18 revised full papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on summarizing lectures; pattern recognition and image analysis; information processing and applications.
This book constitutes the refereed proceedings of the 4th Chinese Conference, IVS 2016, held in Beijing, China, in October 2016. The 19 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are organized in topical sections on low-level preprocessing, surveillance systems; tracking, robotics; identification, detection, recognition; behavior, activities, crowd analysis.
This book constitutes the refereed proceedings of the 6th International Workshop on Representations, Analysis and Recognition of Shape and Motion from Imaging Data, RFMI 2016, held in Sidi Bou Said Village, Tunisia, in October 2016. The 9 revised full papers and 7 revised short papers presented were carefully reviewed and selected from 23 submissions. The papers are organized in topical sections on 3D shape registration and comparison; face analysis and recognition; video and motion analysis; 2D shape analysis.
This book takes the viewpoint that plain symbol processing
techniques have little hope of reproducing the depth and breadth of
capabilities found in human beings. The book introduces new
foundational principles to AI: connectionist/neural networking
methods, case based and memory based methods and picture
processing.
The two-volume set LNCS 10132 and 10133 constitutes the thoroughly refereed proceedings of the 23rd International Conference on Multimedia Modeling, MMM 2017, held in Reykjavik, Iceland, in January 2017. Of the 149 full papers submitted, 36 were selected for oral presentation and 33 for poster presentation; of the 34 special session papers submitted, 24 were selected for oral presentation and 2 for poster presentation; in addition, 5 demonstrations were accepted from 8 submissions, and all 7 submissions to VBS 2017. All papers presented were carefully reviewed and selected from 198 submissions. MMM is a leading international conference for researchers and industry practitioners for sharing new ideas, original research results and practical development experiences from all MMM related areas, broadly falling into three categories: multimedia content analysis; multimedia signal processing and communications; and multimedia applications and services.
This book constitutes the refereed proceedings of the 8th International Conference on Intelligent technologies for Interactive Entertainment, INTETAIN 2016, held in Utrecht, The Netherlands, in June 2016. The 19 full papers, 5 short and 6 workshop papers were selected from 49 submissions and present novel interactive techniques and their application in entertainment, education, culture and art. The papers are grouped in six thematic sessions: serious games, novel applications and tools, exertion games, persuasion and motivation, interaction technologies and game studies.
This edited volume contains technical contributions in the field of computer vision and image processing presented at the First International Conference on Computer Vision and Image Processing (CVIP 2016). The contributions are thematically divided based on their relation to operations at the lower, middle and higher levels of vision systems, and their applications. The technical contributions in the areas of sensors, acquisition, visualization and enhancement are classified as related to low-level operations. They discuss various modern topics - reconfigurable image system architecture, Scheimpflug camera calibration, real-time autofocusing, climate visualization, tone mapping, super-resolution and image resizing. The technical contributions in the areas of segmentation and retrieval are classified as related to mid-level operations. They discuss some state-of-the-art techniques - non-rigid image registration, iterative image partitioning, egocentric object detection and video shot boundary detection. The technical contributions in the areas of classification and retrieval are categorized as related to high-level operations. They discuss some state-of-the-art approaches - extreme learning machines, and target, gesture and action recognition. A non-regularized state preserving extreme learning machine is presented for natural scene classification. An algorithm for human action recognition through dynamic frame warping based on depth cues is given. Target recognition in night vision through convolutional neural network is also presented. Use of convolutional neural network in detecting static hand gesture is also discussed. Finally, the technical contributions in the areas of surveillance, coding and data security, and biometrics and document processing are considered as applications of computer vision and image processing. They discuss some contemporary applications. A few of them are a system for tackling blind curves, a quick reaction target acquisition and tracking system, an algorithm to detect for copy-move forgery based on circle block, a novel visual secret sharing scheme using affine cipher and image interleaving, a finger knuckle print recognition system based on wavelet and Gabor filtering, and a palmprint recognition based on minutiae quadruplets.
Volumetric, or three-dimensional, digital imaging now plays a vital role in many areas of research such as medicine and geology. Medical images acquired by tomographic scanners for instance are often given as a stack of cross-sectional image slices. Such images are called ‘volumetric’ because they depict objects in their entire three-dimensional extent rather than just as a projection onto a two-dimensional image plane. Since huge amounts of volumetric data are continually being produced in many places around the world, techniques for their automatic analysis become ever more important. Written by a computer vision specialist, this clear, detailed account of volumetric image analysis techniques provides a practical approach to the field including the following topics:
A unique point of this book is its low threshold, textually simple and at the same time full of self-assessment opportunities. Other unique points are the succinctness of the chapters with 3 to 6 pages, the presence of entire-commands-texts of the statistical methodologies reviewed and the fact that dull scientific texts imposing an unnecessary burden on busy and jaded professionals have been left out. For readers requesting more background, theoretical and mathematical information a note section with references is in each chapter. The first edition in 2010 was the first publication of a complete overview of SPSS methodologies for medical and health statistics. Well over 100,000 copies of various chapters were sold within the first year of publication. Reasons for a rewrite were four. First, many important comments from readers urged for a rewrite. Second, SPSS has produced many updates and upgrades, with relevant novel and improved methodologies. Third, the authors felt that the chapter texts needed some improvements for better readability: chapters have now been classified according the outcome data helpful for choosing your analysis rapidly, a schematic overview of data, and explanatory graphs have been added. Fourth, current data are increasingly complex and many important methods for analysis were missing in the first edition. For that latter purpose some more advanced methods seemed unavoidable, like hierarchical loglinear methods, gamma and Tweedie regressions and random intercept analyses. In order for the contents of the book to remain covered by the title, the authors renamed the book: SPSS for Starters and 2nd Levelers. Special care was, nonetheless, taken to keep things as simple as possible, simple menu commands are given. The arithmetic is still of a no-more-than high-school level. Step-by-step analyses of different statistical methodologies are given with the help of 60 SPSS data files available through the internet. Because of the lack of time of this busy group of people, the authors have given every effort to produce a text as succinct as possible.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.
In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a "kernel tailoring" approach and a strategy for learning similarities directly from training data; describes various methods for "structure-preserving" embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.
This book constitutes the refereed proceedings of the 17 International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2016, held in Yangzhou, China, in October 2016. The 68 full papers presented were carefully reviewed and selected from 115 submissions. They provide a valuable and timely sample of latest research outcomes in data engineering and automated learning ranging from methodologies, frameworks, and techniques to applications including various topics such as evolutionary algorithms; deep learning; neural networks; probabilistic modeling; particle swarm intelligence; big data analysis; applications in regression, classification, clustering, medical and biological modeling and predication; text processing and image analysis.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition. |
![]() ![]() You may like...
3D Point Cloud Analysis - Traditional…
Shan Liu, Min Zhang, …
Hardcover
R3,357
Discovery Miles 33 570
Feature Learning and Understanding…
Haitao Zhao, Zhihui Lai, …
Hardcover
R3,903
Discovery Miles 39 030
Human Recognition in Unconstrained…
Maria De Marsico, Michele Nappi, …
Hardcover
Classification Methods for Internet…
Martin Holena, Petr Pulc, …
Hardcover
R2,904
Discovery Miles 29 040
Advances in Feature Selection for Data…
Urszula Stanczyk, Beata Zielosko, …
Hardcover
Smart Assisted Living - Toward An Open…
Feng Chen, Rebeca I. Garcia-Betances, …
Hardcover
R3,658
Discovery Miles 36 580
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R8,638
Discovery Miles 86 380
Dark Web Pattern Recognition and Crime…
Romil Rawat, Vinod Mahor, …
Hardcover
R6,734
Discovery Miles 67 340
|