![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Pattern recognition
This book introduces medical imaging, its security requirements, and various security mechanisms using data hiding approaches. The book in particular provides medical data hiding techniques using various advanced image transforms and encryption methods. The book focuses on two types of data hiding techniques: steganography and watermarking for medical images. The authors show how these techniques are used for security and integrity verification of medical images and designed for various types of medical images such as grayscale image and color image. The implementation of techniques are done using discrete cosine transform (DCT), discrete wavelet transform (DWT), singular value decomposition (SVD), redundant DWT (RDWT), fast discrete curvelet transform (FDCuT), finite ridgelet transform (FRT) and non-subsampled contourlet transform (NSCT). The results of these techniques are also demonstrated after description of each technique. Finally, some future research directions are provided for security of medical images in telemedicine application.
This book constitutes the revised selected papers of the Second International Workshop on Understanding Human Activities through 3D Sensors, UHA3DS 2016, that was held in conjunction with the 23rd International Conference on Pattern Recognition, ICPR 2016, held in Cancun, Mexico, in December 2016. The 9 revised full papers were carefully reviewed and selected from 12 submissions. The papers are organized in topical sections on Behavior Analysis, Human Motion Recognition, and Application Datasets.
A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. * Surveys the development of techniques and approaches on pattern recognition in biomolecular data * Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks * Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.
This book constitutes the refereed proceedings of the 13th International Conference on Pattern Recognition and Information Processing, PRIP 2016, held in Minsk, Belarus, in October 2016. The 18 revised full papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on summarizing lectures; pattern recognition and image analysis; information processing and applications.
This book constitutes the refereed proceedings of the 6th National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics, NCVPRIPG 2017, held in Mandi, India, in December 2017. The 48 revised full papers presented in this volume were carefully reviewed and selected from 147 submissions. The papers are organized in topical sections on video processing; image and signal processing; segmentation, retrieval, captioning; pattern recognition applications.
This book constitutes the proceedings of the 6th International Conference on Analysis of Images, Social Networks and Texts, AIST 2017, held in Moscow, Russia, in July 2017. The 29 full papers and 8 short papers were carefully reviewed and selected from 127 submissions. The papers are organized in topical sections on natural language processing; general topics of data analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behavior through event data; social network analysis.
This three volume set, CCIS 771, 772, 773, constitutes the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2017, held in Tianjin, China, in October 2017. The total of 174 revised full papers presented in three volumes were carefully reviewed and selected from 465 submissions. The papers are organized in the following topical sections: biological vision inspired visual method; biomedical image analysis; computer vision applications; deep neural network; face and posture analysis; image and video retrieval; image color and texture; image composition; image quality assessment and analysis; image restoration; image segmentation and classification; image-based modeling; object detection and classification; object identification; photography and video; robot vision; shape representation and matching; statistical methods and learning; video analysis and event recognition; visual salient detection.
Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting, as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.
This edited volume contains technical contributions in the field of computer vision and image processing presented at the First International Conference on Computer Vision and Image Processing (CVIP 2016). The contributions are thematically divided based on their relation to operations at the lower, middle and higher levels of vision systems, and their applications. The technical contributions in the areas of sensors, acquisition, visualization and enhancement are classified as related to low-level operations. They discuss various modern topics - reconfigurable image system architecture, Scheimpflug camera calibration, real-time autofocusing, climate visualization, tone mapping, super-resolution and image resizing. The technical contributions in the areas of segmentation and retrieval are classified as related to mid-level operations. They discuss some state-of-the-art techniques - non-rigid image registration, iterative image partitioning, egocentric object detection and video shot boundary detection. The technical contributions in the areas of classification and retrieval are categorized as related to high-level operations. They discuss some state-of-the-art approaches - extreme learning machines, and target, gesture and action recognition. A non-regularized state preserving extreme learning machine is presented for natural scene classification. An algorithm for human action recognition through dynamic frame warping based on depth cues is given. Target recognition in night vision through convolutional neural network is also presented. Use of convolutional neural network in detecting static hand gesture is also discussed. Finally, the technical contributions in the areas of surveillance, coding and data security, and biometrics and document processing are considered as applications of computer vision and image processing. They discuss some contemporary applications. A few of them are a system for tackling blind curves, a quick reaction target acquisition and tracking system, an algorithm to detect for copy-move forgery based on circle block, a novel visual secret sharing scheme using affine cipher and image interleaving, a finger knuckle print recognition system based on wavelet and Gabor filtering, and a palmprint recognition based on minutiae quadruplets.
This book takes the viewpoint that plain symbol processing
techniques have little hope of reproducing the depth and breadth of
capabilities found in human beings. The book introduces new
foundational principles to AI: connectionist/neural networking
methods, case based and memory based methods and picture
processing.
This book constitutes the refereed proceedings of the 8th International Conference on Intelligent technologies for Interactive Entertainment, INTETAIN 2016, held in Utrecht, The Netherlands, in June 2016. The 19 full papers, 5 short and 6 workshop papers were selected from 49 submissions and present novel interactive techniques and their application in entertainment, education, culture and art. The papers are grouped in six thematic sessions: serious games, novel applications and tools, exertion games, persuasion and motivation, interaction technologies and game studies.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
Volumetric, or three-dimensional, digital imaging now plays a vital role in many areas of research such as medicine and geology. Medical images acquired by tomographic scanners for instance are often given as a stack of cross-sectional image slices. Such images are called ‘volumetric’ because they depict objects in their entire three-dimensional extent rather than just as a projection onto a two-dimensional image plane. Since huge amounts of volumetric data are continually being produced in many places around the world, techniques for their automatic analysis become ever more important. Written by a computer vision specialist, this clear, detailed account of volumetric image analysis techniques provides a practical approach to the field including the following topics:
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.
In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a "kernel tailoring" approach and a strategy for learning similarities directly from training data; describes various methods for "structure-preserving" embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.
Many important planning decisions in society and business depend on proper knowledge and a correct understanding of movement, be it in transportation, logistics, biology, or the life sciences. Today the widespread use of mobile phones and technologies like GPS and RFID provides an immense amount of data on location and movement. What is needed are new methods of visualization and algorithmic data analysis that are tightly integrated and complement each other to allow end-users and analysts to extract useful knowledge from these extremely large data volumes. This is exactly the topic of this book. As the authors show, modern visual analytics techniques are ready to tackle the enormous challenges brought about by movement data, and the technology and software needed to exploit them are available today. The authors start by illustrating the different kinds of data available to describe movement, from individual trajectories of single objects to multiple trajectories of many objects, and then proceed to detail a conceptual framework, which provides the basis for a fundamental understanding of movement data. With this basis, they move on to more practical and technical aspects, focusing on how to transform movement data to make it more useful, and on the infrastructure necessary for performing visual analytics in practice. In so doing they demonstrate that visual analytics of movement data can yield exciting insights into the behavior of moving persons and objects, but can also lead to an understanding of the events that transpire when things move. Throughout the book, they use sample applications from various domains and illustrate the examples with graphical depictions of both the interactive displays and the analysis results. In summary, readers will benefit from this detailed description of the state of the art in visual analytics in various ways. Researchers will appreciate the scientific precision involved, software technologists will find essential information on algorithms and systems, and practitioners will profit from readily accessible examples with detailed illustrations for practical purposes.
This book constitutes the refereed proceedings of the 17th International Conference on Engineering Applications of Neural Networks, EANN 2016, held in Aberdeen, UK, in September 2016. The 22 revised full papers and three short papers presented together with two tutorials were carefully reviewed and selected from 41 submissions. The papers are organized in topical sections on active learning and dynamic environments; semi-supervised modeling; classification applications; clustering applications; cyber-physical systems and cloud applications; time-series prediction; learning-algorithms.
This book presents the first paradigm of social multimedia computing completely from the user perspective. Different from traditional multimedia and web multimedia computing which are content-centric, social multimedia computing rises under the participatory Web2.0 and is essentially user-centric. The goal of this book is to emphasize the user factor in facilitating effective solutions towards both multimedia content analysis, user modeling and customized user services. Advanced topics like cross-network social multimedia computing are also introduced as extensions and potential directions along this research line.
Andreas Bihlmaier describes a novel method to model dynamic spatial relations by machine learning techniques. The method is applied to the task of representing the tacit knowledge of a trained camera assistant in minimally-invasive surgery. The model is then used for intraoperative control of a robot that autonomously positions the endoscope. Furthermore, a modular robotics platform is described, which forms the basis for this knowledge-based assistance system. Promising results from a complex phantom study are presented.
This book describes the basic principles underlying the generation, coding, transmission and enhancement of speech and audio signals, including advanced statistical and machine learning techniques for speech and speaker recognition with an overview of the key innovations in these areas. Key research undertaken in speech coding, speech enhancement, speech recognition, emotion recognition and speaker diarization are also presented, along with recent advances and new paradigms in these areas.
This, the 29th issue of the Transactions on Computational Science journal, is comprised of seven full papers focusing on the area of secure communication. Topics covered include weak radio signals, efficient circuits, multiple antenna sensing techniques, modes of inter-computer communication and fault types, geometric meshes, and big data processing in distributed environments.
This book provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation.
This volume presents 70 carefully selected papers from a major joint event: the 8th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) and the 8th International Conference on Computational Aspects of Social Networks (CASoN 2016). SoCPaR-CASoN 2016, which was organized by the Machine Intelligence Research Labs (MIR Labs), USA and Vellore Institute of Technology (VIT), India and held at the VIT on December 19-21, 2016. It brings together researchers and practitioners from academia and industry to share their experiences and exchange new ideas on all interdisciplinary areas of soft computing and pattern recognition, as well as intelligent methods applied to social networks. This book is a valuable resource for practicing engineers/scientists and researchers working in the field of soft computing, pattern recognition and social networks. |
You may like...
Deep Learning - Research and…
Siddhartha Bhattacharyya, Vaclav Snasel, …
Hardcover
R3,854
Discovery Miles 38 540
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R7,962
Discovery Miles 79 620
Advances in Multirate Systems
Gordana Jovanovic-Dolecek
Hardcover
Biometric Security and Privacy…
Richard Jiang, Somaya Al-Maadeed, …
Hardcover
R4,834
Discovery Miles 48 340
Natural User Interfaces in Medical Image…
Marek R. Ogiela, Tomasz Hachaj
Hardcover
R1,990
Discovery Miles 19 900
Dark Web Pattern Recognition and Crime…
Romil Rawat, Vinod Mahor, …
Hardcover
R6,208
Discovery Miles 62 080
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
R4,574
Discovery Miles 45 740
Advances in Feature Selection for Data…
Urszula Stanczyk, Beata Zielosko, …
Hardcover
|