![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Pattern recognition
Outlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The maximum consensus problem refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.
This book provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation.
This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.
This book constitutes the refereed proceedings of the 11th Chinese Conference on Image and Graphics Technologies and Applications, IGTA 2016, held in Beijing, China in July 2016. The 27 papers presented were carefully reviewed and selected from 69 submissions. They provide a forum for sharing progresses in the areas of image processing technology; image analysis and understanding; computer vision and pattern recognition; big data mining, computer graphics and VR; as well as image technology applications.
A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures. This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to: - Why conventional implementation of the naive Bayesian approach does not work well in image classification? - How to deal with insufficient performance of hierarchical classification systems? - Is it possible to prevent an exhaustive search of the nearest neighbor in a database?
Modeling data from visual and linguistic modalities together creates opportunities for better understanding of both, and supports many useful applications. Examples of dual visual-linguistic data includes images with keywords, video with narrative, and figures in documents. We consider two key task-driven themes: translating from one modality to another (e.g., inferring annotations for images) and understanding the data using all modalities, where one modality can help disambiguate information in another. The multiple modalities can either be essentially semantically redundant (e.g., keywords provided by a person looking at the image), or largely complementary (e.g., meta data such as the camera used). Redundancy and complementarity are two endpoints of a scale, and we observe that good performance on translation requires some redundancy, and that joint inference is most useful where some information is complementary. Computational methods discussed are broadly organized into ones for simple keywords, ones going beyond keywords toward natural language, and ones considering sequential aspects of natural language. Methods for keywords are further organized based on localization of semantics, going from words about the scene taken as whole, to words that apply to specific parts of the scene, to relationships between parts. Methods going beyond keywords are organized by the linguistic roles that are learned, exploited, or generated. These include proper nouns, adjectives, spatial and comparative prepositions, and verbs. More recent developments in dealing with sequential structure include automated captioning of scenes and video, alignment of video and text, and automated answering of questions about scenes depicted in images.
Because circular objects are projected to ellipses in images, ellipse fitting is a first step for 3-D analysis of circular objects in computer vision applications. For this reason, the study of ellipse fitting began as soon as computers came into use for image analysis in the 1970s, but it is only recently that optimal computation techniques based on the statistical properties of noise were established. These include renormalization (1993), which was then improved as FNS (2000) and HEIV (2000). Later, further improvements, called hyperaccurate correction (2006), HyperLS (2009), and hyper-renormalization (2012), were presented. Today, these are regarded as the most accurate fitting methods among all known techniques. This book describes these algorithms as well implementation details and applications to 3-D scene analysis. We also present general mathematical theories of statistical optimization underlying all ellipse fitting algorithms, including rigorous covariance and bias analyses and the theoretical accuracy limit. The results can be directly applied to other computer vision tasks including computing fundamental matrices and homographies between images. This book can serve not simply as a reference of ellipse fitting algorithms for researchers, but also as learning material for beginners who want to start computer vision research. The sample program codes are downloadable from the website: https://sites.google.com/a/morganclaypool.com/ellipse-fitting-for-computer-vision-implementation-and-applications.
The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 79 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Features, learning, and classifiers Biometrics Data Stream Classification and Big Data Analytics Image processing and computer vision Medical applications Applications RGB-D perception: recent developments and applications This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be the as well researchers as students of computer science, artificial intelligence or robotics.
This book covers a wide range of local image descriptors, from the classical ones to the state of the art, as well as the burgeoning research topics on this area. The goal of this effort is to let readers know what are the most popular and useful methods in the current, what are the advantages and the disadvantages of these methods, which kind of methods is best suitable for their problems or applications, and what is the future of this area. What is more, hands-on exemplars supplied in this book will be of great interest to Computer Vision engineers and practitioners, as well as those want to begin their research in this area. Overall, this book is suitable for graduates, researchers and engineers in the related areas both as a learning text and as a reference book.
In den letzten Jahren hat sich der Workshop "Bildverarbeitung fur dieMedizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2016wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefungder Gesprache zwischen Wissenschaftlern, Industrie und Anwendern. DieBeitrage dieses Bandes - einige davon in englischer Sprache - umfassen alleBereiche der medizinischen Bildverarbeitung, insbesondere Bildgebungund -akquisition, Molekulare Bildgebung, Visualisierung und Animation, Anatomische Atlanten, Patientenindividuelle Simulation und Planung, Biomechanische Modellierung, Bildverarbeitung in der Telemedizin, Bildgestutzte Roboter, Chirurgische Simulatoren u.v.m.
This book constitutes the refereed post-conference proceedings of the First International Workshop on Spectral and Shape Analysis in Medical Imaging, SeSAMI 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 10 submitted full papers presented in this volume were carefully reviewed. The papers reflect the following topics: spectral methods; longitudinal methods; and shape methods.
This book constitutes thoroughly revised and selected papers from the 10th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2015, held in Berlin, Germany, in March 2015. VISIGRAPP comprises GRAPP, International Conference on Computer Graphics Theory and Applications; IVAPP, International Conference on Information Visualization Theory and Applications; and VISAPP, International Conference on Computer Vision Theory and Applications. The 23 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 529 submissions. The book also contains one invited talk in full-paper length. The regular papers were organized in topical sections named: computer graphics theory and applications; information visualization theory and applications; and computer vision theory and applications.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
This book takes a fresh look at biometrics and identity management, extending the dialogue beyond technical considerations, and exploring some of the broader societal and philosophical aspects surrounding the use of biometric applications. Features: presents a brief history of the development of biometrics, and describes some of the popularly held misconceptions surrounding the technology; investigates the challenges and possibilities of biometrics across third party infrastructures and on mobile computing devices; provides guidance on biometric systems design; explores the mechanisms necessary to enable identity intelligence, including logging mechanisms, data communications and data formats; discusses such usage issues as collaboration frameworks, and messaging and data translation; examines the impact of biometric technologies on society, covering issues of privacy and user factors; reviews the current situation in identity management, and predicts where these trends may take us in the future.
This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.
Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method.
This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning - instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics - two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis - a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.
This important text/reference presents the latest secure and privacy-compliant techniques in automatic human recognition. Featuring viewpoints from an international selection of experts in the field, the comprehensive coverage spans both theory and practical implementations, taking into consideration all ethical and legal issues. Topics and features: presents a unique focus on novel approaches and new architectures for unimodal and multimodal template protection; examines signal processing techniques in the encrypted domain, security and privacy leakage assessment, and aspects of standardization; describes real-world applications, from face and fingerprint-based user recognition, to biometrics-based electronic documents, and biometric systems employing smart cards; reviews the ethical implications of the ubiquity of biometrics in everyday life, and its impact on human dignity; provides guidance on best practices for the processing of biometric data within a legal framework.
This book constitutes the refereed proceedings of the 16th International Conference on Engineering Applications of Neural Networks, EANN 2015, held in Rhodes, Greece, in September 2015. The 36 revised full papers presented together with the abstracts of three invited talks and two tutorials were carefully reviewed and selected from 84 submissions. The papers are organized in topical sections on industrial-engineering applications of ANN; bioinformatics; intelligent medical modeling; life-earth sciences intelligent modeling; learning-algorithms; intelligent telecommunications modeling; fuzzy modeling; robotics and control; smart cameras; pattern recognition-facial mapping; classification; financial intelligent modeling; echo state networks.
This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same "language" and methods.
This authoritative collection introduces the reader to the state of the art in iris recognition technology. Topics and features: with a Foreword by the "father of iris recognition," Professor John Daugman of Cambridge University; presents work from an international selection of preeminent researchers, reflecting the uses of iris recognition in many different social contexts; provides viewpoints from researchers in government, industry and academia, highlighting how iris recognition is both a thriving industry and an active research area; surveys previous developments in the field, and covers topics ranging from the low-level (e.g., physics of iris image acquisition) to the high level (e.g., alternative non-Daugman approaches to iris matching); introduces many active and open areas of research in iris recognition, including cross-wavelength matching and iris template aging. This book is an essential resource for anyone wishing to improve their understanding of iris recognition technology.
Texture accounts for an important part of the realism of simulated experiences, and it is most certainly true during tactile interaction. We usually experience roughness by running our fingers onto the explored surface. The perception of this fine texture is mediated by the vibrations generated by the encounters of the skin and the asperities of the surfaces. Reproduction of Tactual Textures presents factors that contribute to the mechanics of the interaction between a bare finger and a surface with a view to their artificial reproduction. It discusses the recording and reproduction of tactual textures, and analyses a case study of the development of a device able to record the vibratory signal from a fingertip sliding over a textured surface. The same device is then used in a reverse way to render those previously measured signals to the user's fingertip. These developments open new questions about the biomechanical properties of the skin and their relation to perception. The second half of Reproduction of Tactual Textures focuses on the implication of the dynamic parameters of the skin onto rendering performance, and it concludes with a study on the important features that are present in the vibratory signal and their relation to texture perception. This state-of-the-art volume highlights the importance of the mechanics and biomechanics during the haptic exploration of surfaces and their possible contribution to perception. Collectively, the findings reported are pertinent to many applications, including robotic perception and the design of effective virtual reality systems.
Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existing PR and CV technologies can naturally evolve using this new paradigm. The chapters of this book show different successful case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.
This book constitutes the proceedings of the 6th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2015, held in Warsaw, Poland, in June/July 2015. The total of 53 full papers and 1 short paper presented in this volume were carefully reviewed and selected from 90 submissions. They were organized in topical sections named: foundations of machine learning; image processing; image retrieval; image tracking; pattern recognition; data mining techniques for large scale data; fuzzy computing; rough sets; bioinformatics; and applications of artificial intelligence. |
![]() ![]() You may like...
|