![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Pattern recognition
Correcting the Great Mistake People often mistake one thing for another. That's human nature. However, one would expect the leaders in a particular ?eld of endeavour to have superior ab- ities to discriminate among the developments within that ?eld. That is why it is so perplexing that the technology elite - supposedly savvy folk such as software developers, marketers and businessmen - have continually mistaken Web-based graphics for something it is not. The ?rst great graphics technology for the Web, VRML, has been mistaken for something else since its inception. Viewed variously as a game system, a format for architectural walkthroughs, a platform for multi-user chat and an augmentation of reality, VRML may qualify as the least understood invention in the history of inf- mation technology. Perhaps it is so because when VRML was originally introduced it was touted as a tool for putting the shopping malls of the world online, at once prosaic and horrifyingly mundane to those of us who were developing it. Perhaps those ?rst two initials,"VR,"created expectations of sprawling, photorealistic f- tasy landscapes for exploration and play across the Web. Or perhaps the magnitude of the invention was simply too great to be understood at the time by the many, ironically even by those spending the money to underwrite its development. Regardless of the reasons, VRML suffered in the mainstream as it was twisted to meet unintended ends and stretched far beyond its limitations.
Humans are often extraordinary at performing practical reasoning. There are cases where the human computer, slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it? The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: our ability to learn from experience, and our ability to reason from what has been learned. This book is the first to offer a self-contained presentation of neural network models for a number of computer science logics, including modal, temporal, and epistemic logics. By using a graphical presentation, it explains neural networks through a sound neural-symbolic integration methodology, and it focuses on the benefits of integrating effective robust learning with expressive reasoning capabilities. The book will be invaluable reading for academic researchers, graduate students, and senior undergraduates in computer science, artificial intelligence, machine learning, cognitive science and engineering. It will also be of interest to computational logicians, and professional specialists on applications of cognitive, hybrid and artificial intelligence systems.
This book presents the thoroughly revised versions of lectures given by leading researchers during the Workshop on Advanced 3D Imaging for Safety and Security in conjunction with the International Conference on Computer Vision and Pattern Recognition CVPR 2005, held in San Diego, CA, USA in June 2005. It covers the current state of the art in 3D imaging for safety and security.
These two volumes, LNCS 7076 and LNCS 7077, constitute the refereed proceedings of the Second International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2011, held in Visakhapatnam, India, in December 2011. The 124 revised full papers presented in both volumes were carefully reviewed and selected from 422 submissions. The papers explore new application areas, feature new bio-inspired algorithms for solving specific hard optimization problems, and review the latest progresses in the cutting-edge research with swarm, evolutionary, and memetic computing in both theoretical and practical aspects.
The first edition was released in 1996 and has sold close to 2200 copies. Provides an up-to-date comprehensive treatment of MDS, a statistical technique used to analyze the structure of similarity or dissimilarity data in multidimensional space. The authors have added three chapters and exercise sets. The text is being moved from SSS to SSPP. The book is suitable for courses in statistics for the social or managerial sciences as well as for advanced courses on MDS. All the mathematics required for more advanced topics is developed systematically in the text.
This book constitutes thoroughly refereed revised selected papers from the First IAPR TC3 Workshop on Partially Supervised Learning, PSL 2011, held in Ulm, Germany, in September 2011. The 14 papers presented in this volume were carefully reviewed and selected for inclusion in the book, which also includes 3 invited talks. PSL 2011 dealt with methodological issues as well as real-world applications of PSL. The main methodological issues were: combination of supervised and unsupervised learning; diffusion learning; semi-supervised classification, regression, and clustering; learning with deep architectures; active learning; PSL with vague, fuzzy, or uncertain teaching signals; learning, or statistical pattern recognition; and PSL in cognitive systems. Applications of PSL included: image and signal processing; multi-modal information processing; sensor/information fusion; human computer interaction; data mining and Web mining; forensic anthropology; and bioinformatics.
Medical imaging is an important and rapidly expanding area in medical science. Many of the methods employed are essentially digital, for example computerized tomography, and the subject has become increasingly influenced by develop ments in both mathematics and computer science. The mathematical problems have been the concern of a relatively small group of scientists, consisting mainly of applied mathematicians and theoretical physicists. Their efforts have led to workable algorithms for most imaging modalities. However, neither the fundamentals, nor the limitations and disadvantages of these algorithms are known to a sufficient degree to the physicists, engineers and physicians trying to implement these methods. It seems both timely and important to try to bridge this gap. This book summarizes the proceedings of a NATO Advanced Study Institute, on these topics, that was held in the mountains of Tuscany for two weeks in the late summer of 1986. At another (quite different) earlier meeting on medical imaging, the authors noted that each of the speakers had given, there, a long introduction in their general area, stated that they did not have time to discuss the details of the new work, but proceeded to show lots of clinical results, while excluding any mathematics associated with the area.
This professional book discusses privacy as multi-dimensional, and then pulls forward the economics of privacy in the first few chapters. This book also includes identity-based signatures, spyware, and placing biometric security in an economically broken system, which results in a broken biometric system. The last chapters include systematic problems with practical individual strategies for preventing identity theft for any reader of any economic status. While a plethora of books on identity theft exists, this book combines both technical and economic aspects, presented from the perspective of the identified individual.
The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit, therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the following chapters
This book contains several invited papers and a selection of research papers submitted to Computer Animation '92, the fourth international workshop on Computer Animation, which was held in Geneva on May 20-22. This workshop, now an annual event, has been organized by the Computer Graphics Society, the University of Geneva, and the Swiss Federal Institute of Technology in Lausanne. During the international workshop on Computer Animation '92, the fifth Computer-generated Film Festival of Geneva, was held. The book presents original research results and applications experience in various areas of computer animation. This year most papers are related to physics-based animation, human animation, and geometric modelling for animation. NADIA MAGNENAT THALMANN DANIEL THALMANN Table of Contents Part I: Physics-based Animation The Control of Hovering Flight for Computer Animation David Haumann, Jessica K. Hodgins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Inverse Problems in Computer Graphics Michael Kass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 NPSNET: Physically-based Modeling Enhancements to An Object File Format Michael J. Zyda, James G. Monahan, David R. Pratt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 A New Method for Approximative Interactive Dynamics Ulrich Leiner, Bernhard Preim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Part ll: Human animation Extraction of 3D Shapes from the Moving Human Face Using Lighting Swjtch Photometry Hitoshi Saji, Hirohisa Hioki, Yoshihisa Shinagawa, Kensyu Yoshida, Tosiyasu L. Kunii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 An Interactive Tool for the Design of Human Free-Walking Trajectories Laurent Bezault, Ronan Boulic, Nadia Magnenat Thalmann, Daniel Thalmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Achilles - A System for Visualizing Non Standard Human Gait Homero L. Piccolo, Kentaro Takahashi, Marcus G. de Amorim, Andre C. de Sa Carneiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
One of the great intellectual challenges for the next few decades is the question of brain organization. What is the basic mechanism for storage of memory? What are the processes that serve as the interphase between the basically chemical processes of the body and the very specific and nonstatistical operations in the brain? Above all, how is concept formation achieved in the human brain? I wonder whether the spirit of the physics that will be involved in these studies will not be akin to that which moved the founders of the "rational foundation of thermodynamics". C. N. Yang! 10 The human brain is said to have roughly 10 neurons connected through about 14 10 synapses. Each neuron is itself a complex device which compares and integrates incoming electrical signals and relays a nonlinear response to other neurons. The brain certainly exceeds in complexity any system which physicists have studied in the past. Nevertheless, there do exist many analogies of the brain to simpler physical systems. We have witnessed during the last decade some surprising contributions of physics to the study of the brain. The most significant parallel between biological brains and many physical systems is that both are made of many tightly interacting components.
At the frontier of research, this book offers complete coverage of human ear recognition. It explores all aspects of 3D ear recognition: representation, detection, recognition, indexing and performance prediction. It uses large datasets to quantify and compare the performance of various techniques. Features and topics include: Ear detection and recognition in 2D image; 3D object recognition and 3D biometrics; 3D ear recognition; Performance comparison and prediction.
This concise but comprehensive textbook reviews the most popular neural-network methods and their associated techniques. Each chapter provides state-of-the-art descriptions of important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms - powerful tools for neural-network learning - are introduced. The systematic survey of neural-network models and exhaustive references list will point readers toward topics for future research. The algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.
The three-volume set LNCS 6838, LNAI 6839, and LNBI 6840 constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Intelligent Computing, ICIC 2011, held in Zhengzhou, China, in August 2011. This volume contains 93 revised full papers, from a total of 281 presentations at the conference - carefully reviewed and selected from 832 initial submissions. The papers address all issues in Advanced Intelligent Computing, especially Methodologies and Applications, including theories, methodologies, and applications in science and technology. They include a range of techniques such as artificial intelligence, pattern recognition, evolutionary computing, informatics theories and applications, computational neuroscience and bioscience, soft computing, human computer interface issues, etc.
It is an established tradition that researchers from many countries get together on the average every three years for a two week Advanced Studies Institute on Automatic Speech Recognition and Synthesis. According to ASI policies the Institute is financed by NATO. This book contains the texts of lectures and papers contributed by the attendees of the ASI which was held July 2 - 14, 1984, at Bonas, Gers, France. Focussed on New Systems and Architectures for Automatic Speech Recognition and Synthesis, this book is divided into 4 parts: (a) Review of ba8ic algorithm8 (b) SY8tem architecture and VLSI for automatic Speech (c) Software 8Y8tem8 for automatic 8peech recognition, (d) Speech 8ynthe8i8 and phonetic8. Due to the international nature of the Institute, the readers will find in this book different styles, different points of view and applications to different languages. This reflects also some characteristics of the International Association for Pattern Recognition ( APR) whose technical committee on Speech Recognition has organized this ASI. Proposed contributions have been reviewed by an Editorial Committee composed of W. Ainsworth (Kent), R. Bisiani (Pittsburgh), J. P. Haton (Nancy), W. Hess (Munich), J. L. Houle (Montreal), P. Laface (Turin), R. Moore (Malvern), H. Niemann (Erlangen) and J. Ohala (Berkeley). Typesetting of the book was performed using SYMSET facilities developed entirely by the Department of Computer Science at Concordia University. Special thanks are due to L. Lam, H. Monkiewicz and L. Thiel.
This book constitutes the refereed proceedings of the 14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2009, held in La Laguna, Canary Islands, Spain, in November 2011. The 50 revised full papers presented were carefully selected from 149 submissions. The papers are organized in topical sections on agent-based and multi-agent systems; machine learning; knowledge representation, logic, search and planning; multidisciplinary topics and applications; vision and robotics; soft computing; Web intelligence and information retrieval.
This book constitutes the proceedings of the 5th International Conference on Nonlinear Speech Processing, NoLISP 2011, held in Las Palmas de Gran Canaria, Spain, in November 2011. The purpose of the workshop is to present and discuss new ideas, techniques and results related to alternative approaches in speech processing that may depart from the main stream. The 33 papers presented together with 2 keynote talks were carefully reviewed and selected for inclusion in this book. The topics of NOLISP 2011 were non-linear approximation and estimation; non-linear oscillators and predictors; higher-order statistics; independent component analysis; nearest neighbors; neural networks; decision trees; non-parametric models; dynamics of non-linear systems; fractal methods; chaos modeling; and non-linear differential equations.
The three volume set LNCS 7062, LNCS 7063, and LNCS 7064
constitutes the proceedings of the 18th International Conference on
Neural Information Processing, ICONIP 2011, held in Shanghai,
China, in November 2011.
For many years researchers in the field of Handwriting Recognition were considered to be working in an area of minor importance in Pattern Recog nition. They had only the possibility to present the results of their research at general conferences such as the ICPR or publish their papers in journals such as some of the IEEE series or PR, together with many other papers generally oriented to the more promising areas of Pattern Recognition. The series of International Workshops on Frontiers in Handwriting Recog nition and International Conferences on Document Analysis and Recognition together with some special issues of several journals are now fulfilling the expectations of many researchers who have been attracted to this area and are involving many academic institutions and industrial companies. But in order to facilitate the introduction of young researchers into the field and give them both theoretically and practically powerful tools, it is now time that some high level teaching schools in handwriting recognition be held, also in order to unite the foundations of the field. Therefore it was my pleasure to organize the NATO Advanced Study Institute on Fundamentals in Handwriting Recognition that had its origin in many exchanges among the most important specialists in the field, during the International Workshops on Frontiers in Handwriting Recognition."
Fundamentals algorithms for SIMD and MIMD hypercubes are developed. These include algorithms for such problems as data broadcasting, data sum, prefix sum, shift, data circulation, data accumulation, sorting, random access reads and writes and data permutation. The fundamental algorithms are then used to obtain efficient hypercube algorithms for matrix multiplication, image processing problems such as convolution, template matching, hough transform, clustering and image processing transformation, and string editing. Most of the algorithms in this book are for hypercubes with the number of processors being a function of problems size. However, for image processing problems, the book also includes algorithms for and MIMD hypercube with a small number of processes. Experimental results on an NCUBE/77 MIMD hypercube are also presented. The book is suitable for use in a one-semester or one-quarter course on hypercube algorithms. For students with no prior exposure to parallel algorithms, it is recommended that one week will be spent on the material in chapter 1, about six weeks on chapter 2 and one week on chapter 3. The remainder of the term can be spent covering topics from the rest of the book.
This book constitutes the refereed proceedings of the 10th International Workshop on Multiple Classifier Systems, MCS 2011, held in Naples, Italy, in June 2011. The 36 revised papers presented together with two invited papers were carefully reviewed and selected from more than 50 submissions. The contributions are organized into sessions dealing with classifier ensembles; trees and forests; one-class classifiers; multiple kernels; classifier selection; sequential combination; ECOC; diversity; clustering; biometrics; and computer security.
Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden Markov models and Markov-chain or n-gram models. First, the text introduces the typical architecture of a Markov model-based handwriting recognition system, and familiarizes the reader with the essential theoretical concepts behind Markovian models. Then, the text reviews proposed solutions in the literature for open problems in applying Markov model-based approaches to automatic handwriting recognition.
The two volume set LNCS 6938 and LNCS 6939 constitutes the refereed proceedings of the 7th International Symposium on Visual Computing, ISVC 2011, held in Las Vegas, NV, USA, in September 2011. The 68 revised full papers and 46 poster papers presented together with 30 papers in the special tracks were carefully reviewed and selected from more than 240 submissions. The papers of part I (LNCS 6938) are organized in computational bioimaging, computer graphics, motion and tracking, segmentation, visualization; mapping modeling and surface reconstruction, biomedical imaging, computer graphics, interactive visualization in novel and heterogeneous display environments, object detection and recognition. Part II (LNCS 6939) comprises topics such as immersive visualization, applications, object detection and recognition, virtual reality, and best practices in teaching visual computing.
This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning in Medical Imaging, MLMI 2011, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 44 revised full papers presented were carefully reviewed and selected from 74 submissions. The papers focus on major trends in machine learning in medical imaging aiming to identify new cutting-edge techniques and their use in medical imaging.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International ICST Conference on Forensic Applications and Techniques in Telecommunications, Information and Multimedia, E-Forensics 2010, held in Shanghai, China, in November 2010. The 32 revised full papers presented were carefully reviewed and selected from 42 submissions in total. These, along with 5 papers from a collocated workshop of E-Forensics Law, cover a wide range of topics including digital evidence handling, data carving, records tracing, device forensics, data tamper identification, and mobile device locating. |
You may like...
Biometric Security and Privacy…
Richard Jiang, Somaya Al-Maadeed, …
Hardcover
R4,834
Discovery Miles 48 340
Lectures on the Nearest Neighbor Method
Gerard Biau, Luc Devroye
Hardcover
Mobile Networks for Biometric Data…
Massimo Conti, Natividad Martinez Madrid, …
Hardcover
R6,197
Discovery Miles 61 970
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
R4,574
Discovery Miles 45 740
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R7,962
Discovery Miles 79 620
Dark Web Pattern Recognition and Crime…
Romil Rawat, Vinod Mahor, …
Hardcover
R6,208
Discovery Miles 62 080
|