Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation
Biological management of nutrient supply to plants is intrinsically more complex than the provision of nutrients as inorganic fertilizers. We need to know whether the nutrients released are retained or lost from the system, whether rates of decomposition can be manipulated to improve nutrient use efficiency, and how the various fractions of plant residues translate into pools of organic matter in soil. Only then can predictive models for nutrient release, plant uptake and soil organic matter dynamics be truly tested and validated. This book brings together contemporary ideas on the characterization and manipulation of plant quality and especially its role in soil organic matter formation and nutrient cycling. It contains work from the leading workers in both temperate and tropical systems. There are also contributions describing work outside decomposition in soil ecosystems, such as the work of plant biochemists and animal nutritionists, as research in these areas has provided many ideas and concepts used in plant quality analysis. A wide range of topics is covered from investigations at the molecular level through to management options for farmers in relation to optimising biological management of crop residues. The work presented in this volume is valuable to all those researching and managing the supply of nutrients to plants. It is important reading for soil scientists, plant physiologists and crop scientists.
This book provides the Assisted Reproduction Technologies (ART) community an update of the fast approaching novel technologies that may allow improved assessment of the reproductive potential of sperm, oocytes and embryos. The reader has access to concise updates on the rapidly developing diagnostic technologies (genomics, transcriptomics, proteomics and metabolomics) and morphological methods which may help us better assess the gametes and embryos. Methodologies are described which enable selection of the best gamete or embryo by invasive and non-invasive diagnostics, as well as the clinical validity of these techniques.
This volume will be the only existing single-authored book offering a science-based breeder's manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.
Genetically uniform cultivars in many self-pollinated cereal crops dominate commercial production in high-input environments especially due to their high grain yields and wide geographical adaptation. These cultivars generally perform well under favorable and high-input farming systems but their optimal performance cannot be achieved on marginal/organic lands or without the use of external chemical inputs (fertilizers, herbicides and pesticides). Cereal breeding programs aim at evaluating candidate lines/cultivars for agronomic, disease and quality traits in a weed free environment that makes it impossible to identify traits conferring competitive ability against weeds. Moreover, quantification of competitive ability is a complex phenomenon which is affected by range of growth traits. Above (e.g. light) and below (e.g. water and nutrients) ground resources also influence competitiveness to a greater extent. Competitiveness is quantitatively inherited trait which is heavily influenced by many factors including genotype, management, environment and their interaction. Sound plant breeding techniques and good experimental designs are prerequisites for maximizing genetic gains to breed cultivars for organically managed lands. The brief is focused on breeding wheat for enhanced competitive ability along with other agronomic, genetic and molecular studies that have been undertaken to improve weed suppression, disease resistance and quality in organically managed lands. The examples from other cereals have also been highlighted to compare wheat with other cereal crops.
This Third Edition of Principles of Seed Science and Technology. like the first two editions. is written for the advanced undergraduate student or lay person who desires an introduction to the science and technology ofseeds. The first eight chapters presentthe seed as abiologicalsystemand coverits origin. development. composition. function (and sometimes nonfunctionJ, performance and ultimate deterioration. The last seven chapters present the fundamentals ofhow seedsare produced. conditioned. evaluated and distributed in our modern agricultural society. A new chapter on seed enhancement has been added to reflect the significant advancements made in the last 10 years on new physiological and molecular biology techniques to further enhance seed performance. Because of the fundamental importance of seeds to both agriculture and to all of society. we have taken great care to present the science and technology of seeds with the respect and feeling this study deserves. We hope that this feeling will becommuni cated to our readers. Furthermore. we have attempted to present information in a straight-forward. easy-to-read manner that will be easily understood by students and lay persons alike. Special care has been taken to address both current state-of-the-art as well as future trends in seed technology. . We believe this Third Edition represents a new level in presenting information that appeals to advanced undergraduate students as well as to those desiring more fundamental information on seed form and function. At the same time. it continues to havethestrengths ofthe firsttwoeditions.initsreadabilityaswellas itscomprehensive coverage of the broader area of seed science and technology.
Sugarcane, an important source of sugar, plays a substantial role in world economy. As a C4 plant this has very efficient system for carbohydrate metabolism through photosynthesis. Crop improvement efforts have concentrated mainly on improving quality traits, mainly sugar content. This being a complex trait, involves a large number of target genes in the metabolic pathway. The complex polyploid nature of the crop makes it more difficult to pin point the key players in this complex pathway. Despite its importance, little is known about the exact mechanism of sucrose accumulation and its regulation in sugarcane. Many enzymes have been proposed to have a key role in determining the ultimate sucrose content in sugarcane. There are evidences to show that some of these like Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuSy) are encoded by multiple genes that show organ specifity in sugarcane. Especially in a crop like sugarcane where the classical techniques are of limited help in elucidating various genetic complexities, molecular techniques can be of help in throwing some light on the grey areas. Molecular marker strategies will be of help in understanding some aspects of sucrose metabolism and its regulation in this crop, thus complementing the ongoing crop improvement programmes.
Paleopalynology, second edition, provides profusely illustrated treatment of fossil palynomorphs, including spores, pollen, dinoflagellate cysts, acritarchs, chitinozoans, scolecodonts, and various microscopic fungal and algal dispersal bodies. The book serves both as a student text and general reference work. Palynomorphs yield information about age, geological and biological environment, climate during deposition, and other significant factors about the enclosing rocks. Extant spores and pollen are treated first, preparing the student for more difficult work with fossil sporomorphs and other kinds of palynomorphs. Recognizing that palynomorphs occur together in rocks because of chemical robustness and stratigraphic distribution, not biological relationship, the central sections are organized stratigraphically. Among many other topics presented are the sedimentation and geothermal alteration of palynomorphs, and palynofacies analysis. An appendix describes laboratory methods. The glossary, bibliographies and index are useful tools for study of the literature.
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.
Over millions of years, terrestrial plants have competed for limited resources, defended themselves against herbivores, and resisted a myriad of environmental stresses. These struggles have helped generate more than a quarter million terrestrial plant species, each possessing a unique strategy for success. Yet, as "Resource Strategies of Wild Plants" demonstrates, the constraints on plant growth are universal enough that a few survival strategies hold true for all seed-producing plants. This book describes the five major strategies of growth for terrestrial plants, details how plants succeed when resources are scarce, delves into the history of research into plant strategies, and resets the foundational understanding of ecological processes. Drawing from recent findings in plant-herbivore interactions, ecosystem ecology, and evolutionary ecology, Joseph Craine explains how plants attain available nutrients, withstand the immense stresses of drying soils, and flourish in the race for light. He shows that the competition for resources has shaped plant evolution in newly discovered ways, while the scarcity of such resources has affected how plants interact with herbivores, wind, fire, and frost. An understanding of the major resource strategies of wild plants remains central to learning about the ecology of plant communities, global changes in the biosphere, methods for species conservation, and the evolution of life on earth.
Hormonal Cross-Talk, Plant Defense and Development: Plant Biology, Sustainability and Climate Change focuses specifically on plants and their interaction to auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, strigolactones, and the potential those interactions offer for improved plant health and production. Plant hormones (auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, salicylic acid, strigolactones etc.) regulate numerous aspects of plant growth and developmental processes. Each hormone initiates a specific molecular pathway, with each pathway integrated in a complex network of synergistic, antagonistic and additive interactions. This is a valuable reference for those seeking to understand and improve plant health using natural processes. The cross-talks of auxins - abscisic acid, auxins - brassinosteroids, brassinosteroids- abscisic acid, ethylene - abscisic acid, brassinosteroids - ethylene, cytokinins - abscisic acid, brassinosteroids - jasmonates, brassinosteroids - salicylic acid, and gibberellins - jasmonates - strigolactones have been shown to regulate a number of biological processes in plant system. The cross-talk provides robustness to the plant immune system but also drives specificity of induced defense responses against the plethora of biotic and abiotic interactions.
This book has been written in an attempt to advance people's knowledge on the Lima bean (Phaseolus lunatus) crop in tropical and sub-tropical regions. The Lima bean is an important species of plant for humans in tropical regions and its seeds are considered an important source of protein for people from South America, Africa, and Mexico. There is little information about the Lima bean crop regarding its origin, diversity, evolution, growth and production. This book encompasses nine chapters on the topic to provide a broad knowledge of this fascinating crop. The first three chapters cover the origin, diversity and evolution of the crop, including important information from Mexico and Brazil. Chapter Four covers the phenology and development of the Lima bean aiming to understand all periods of growth. Chapter Five shows important information for plant production regarding soil, chemical and organic fertilisation. Chapters Six and Seven explain all aspects related to biological nitrogen fixation with information about soil bacterial diversity and the potential to fix the problem in tropical soil. Chapter Eight reports important diseases related to the Lima bean and their management. Chapter Nine shows the social and economic importance of the Lima bean mainly for developing countries.
Genomic Applications for Crop Breeding: Biotic Stress is the first of two volumes looking at the latest advances in genomic applications to crop breeding. This volume focuses on genomic-assisted advances for improving economically important crops against biotic stressors, such as viruses, fungi, nematodes, and bacteria. Looking at key advances in crops such as rice, barley, wheat, and potato amongst others, Genomic Applications for Crop Breeding: Biotic Stress will be an essential reference for crop scientists, geneticists, breeders, industry personnel and advanced students in the field.
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops. It is a serial title that appears in the form of one or two volumes per year.
In Vitro Culture of Higher Plants presents an up-to-date and wide- ranging account of the techniques and applications, and has primarily been written in response to practical problems. Special attention has been paid to the educational aspects. Typical methodological aspects are given in the first part: laboratory set-up, composition and preparation of media, sterilization of media and plant material, isolation and (sub)culture, mechanization, the influence of plant and environmental factors on growth and development, the transfer from test-tube to soil, aids to study. The question of why in vitro culture is practised is covered in the second part: embryo culture, germination of orchid seeds, mericloning of orchids, production of disease-free plants, vegetative propagation, somaclonal variation, test-tube fertilization, haploids, genetic manipulation, other applications in phytopathology and plant breeding, secondary metabolites.
From their ability to use energy from sunlight to make their own food, to combating attacks from diseases and predators, plants have evolved an amazing range of life-sustaining strategies. Written with the non-specialist in mind, John King's lively natural history explains how plants function, from how they gain energy and nutrition to how they grow, develop and ultimately die. New to this edition is a section devoted to plants and the environment, exploring how problems created by human activities, such as global warming, pollution of land, water and air, and increasing ocean acidity, are impacting on the lives of plants. King's narrative provides a simple, highly readable introduction, with boxes in each chapter offering additional or more advanced material for readers seeking more detail. He concludes that despite the challenges posed by growing environmental perils, plants will continue to dominate our planet.
Pollen and spores are ubiquitous, and preserve exceptionally well. This, and their enormous structural diversity, offers exceptional opportunities for integrating findings from studies of both recent and fossil material, and for developing new insights into the pathways and processes of diversification. This volume brings together both international authorities and younger researchers who have developed novel approaches from such diverse fields as paleobotany, ontogeny, molecular biology, and systematics. Three main issues are discussed: the evidence provided by the fossil record, the contribution of ontogenetic data, and the methods of systematic analysis. Of special interest are the sections detailing the most recent findings regarding fossil angiosperms and ontogeny in primitive angiosperms. The information provided will be of great interest and relevance to such disparate disciplines as vegetational history, geology, plant taxonomy and plant evolution.
This book maintains that higher plants manifest some degree of sexual selection, and it begins to build a framework that unifies many features of plant reproduction previously considered unrelated. Reviewing evidence for sexual selection in plants, the authors discuss possible male-female interactions, concluding with an extensive set of hypotheses for testing. Mechanisms that could be employed in sexual selection in plants include various cellular mechanisms, such as both nuclear and cytoplasmic genetics, B chromosomes, and paternal contributions to the zygote, as well as abortion, double fertilization, delayed fertilization, and certain forms of polyembryony. This study compares the consequences of these processes for the evolution of mate choice in "gymnosperms" and angiosperms.
Annual Plant Reviews, Volume 6 Reproduction is the final stage in the life cycle of a plant. This volume presents an overview of plant reproduction at research and professional level, from the induction of flowering to the setting of seeds. Authors address all the major contemporary issues in plant reproduction and the chapters are grouped into four sections along a chronological theme: physiological and molecular control of the floral transition, floral organ development, pollination, embryogenesis and senescence.
The Genomics Applications in Crop Improvement two volume set brings together a diverse field of international experts in plant breeding genomics to share their experiences in the field, from success stories to lessons learnt. In recent years advances in genetics and genomics have greatly enhanced our understanding of the structural and functional aspects of plant genomes. Several novel genetic and genomics approaches such as association genetics, advanced back-cross QTL analysis, allele mining, comparative and functional genomics, transcriptomics, proteomics, etc. offer unprecedented opportunities to examine crop genetic variation and utilize this variability for breeding purposes. Enhancing the prediction of the phenotype from a genotype using genomics tools is referred to as 'genomics-assisted breeding'. To date, genomics-assisted breeding has shown its potential for crop improvement in several crops, however these successes have been largely restricted to temperate cereal and legume crops, and others such as Eucalyptus, sugarcane, tomato and other vegetables crops. Moreover, while success stories are available for improving resistance to biotic stresses, only a few examples are available on development of superior lines for abiotic stresses. These volumes will allow researchers the tools to begin to apply these technologies more broadly and will hopefully lead to lasting improvements in a wide variety of economically important crops. Volume One, Biotic Stress, focuses on genomic-assisted advances for improving economically important crops against biotic stressors, such as viruses, fungi, nematodes, and bacteria. Looking at key advances in crops such as rice, barley, wheat, and potato amongst others. Volume Two, Abiotic Stress, Quality and Yield Improvement, focuses on advances improving crop resistance to abiotic stresses such as extreme heat, drought, flooding as well as advances made in quality and yield improvement. Chapters examine advances in such key crops as rice, maize, and sugarcane, among others. * Two volumes covering important topics in crop genomics and applying that information to breeding improved varieties of economically important crops * Volumes cover improving resistance to abiotic and biotic stressors as well as breeding efforts to improve yield and quality * Includes chapters on current challenges for plant breeders such as fusarium disease in wheat and cyst nematodes in soybean crops * Organized by crop, with chapters covering a variety of topics for each including disease resistance, drought tolerance, salinity tolerance and overall improvement of yield * Written by an international team of experts This book is intended for crop science researchers, plant biologists, geneticists, physiologists, cellular and molecular biologists, and advanced students in related fields will also find this set useful.
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. Jose B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of Sao Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, Sao Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles is an extensive volume which provides a broad and detailed overview of Nitric Oxide (NO) in plant biology. The book covers the entirety of the crucial role NO plays in the plant lifecycle, from the regulation of seed germination and growth to synthesis, nitrogen fixation and stress response. Beginning with NO production and NO homeostasis, Nitric Oxide in Plant Biology goes on to cover a variety of NO roles, with a focus on NO signalling, crosstalk and stress responses. Edited by leading experts in the field and featuring the latest research from laboratories from across the globe, it is a comprehensive resource of interest to students and researchers working in plant physiology, agriculture, biotechnology, and the pharmaceutical and food industries.
Plant Small RNA: Biogenesis, Regulation and Application describes the biosynthesis of small RNA in plant systems. With an emphasis on the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival, this books presents the basics and most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. In addition, it emphasizes the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival. Final sections cover the most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology.
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops. It is a serial title that appears in the form of one or two volumes per year.
Flora of North America North of Mexico Volume 12 - Magnoliophyta: Vitaceae to Garryaceae - includes treatments prepared by 53 authors covering 765 species in 122 genera classified in 29 families. Among the families treated in this volume, the largest are Euphorbiaceae (259 species), Rhamnaceae (105), Loasaceae (94), Linaceae (52), Oxalidaceae (36), Celastraceae (34), Vitaceae (30), Hydrangeaceae (25), Phyllanthaceae (23), and Cornaceae (20). Descriptions for all of the families, genera, and species (plus infraspecies, if recognized) are provided plus occurrence maps for species and infraspecies are included with more than 27% of the species illustrated. Keys are included to aid in the identification of genera in families and species plus infraspecies within the genera. Volume 12 is the twentieth volume to be published in the planned 30-volume Flora of North America North of Mexico series. |
You may like...
Fungi in Fuel Biotechnology
Gholamreza Salehi Jouzani, Meisam Tabatabaei, …
Hardcover
R4,904
Discovery Miles 49 040
Somatic Genome Manipulation - Advances…
Xiu-Qing Li, Danielle J. Donnelly, …
Hardcover
Genetic Enhancement in Major Food…
Kul Bhushan Saxena, Rachit K. Saxena, …
Hardcover
R3,956
Discovery Miles 39 560
Accelerated Plant Breeding, Volume 2…
Satbir Singh Gosal, Shabir Hussain Wani
Hardcover
R5,249
Discovery Miles 52 490
Forest BioEnergy Production…
Seppo Kellomaki, Antti Kilpelainen, …
Hardcover
R4,637
Discovery Miles 46 370
Plant Cell and Tissue Culture - A Tool…
Karl-Hermann Neumann, Ashwani Kumar, …
Hardcover
R3,593
Discovery Miles 35 930
Selenium Supplementation in…
Alzbeta Hegedusova, Ondrej Hegedus, …
Hardcover
R3,937
Discovery Miles 39 370
Industrially Important Fungi for…
Ahmed M. Abdel-Azeem, Ajar Nath Yadav, …
Hardcover
R4,591
Discovery Miles 45 910
|