![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Signal processing
This second book by the author on WSNs focuses on the concepts of energy, and energy harvesting and management techniques. Definitions and terminologies are made clear without leaning on the relaxing assumption that they are already known or easily reachable, the reader is not to be diverted from the main course. Neatly drawn figures assist in viewing and imagining the offered topics. To make energy related topics felt and seen, the adopted technologies as well as their manufacturers are presented in details. With such a depth, this book is intended for a wide audience, it is meant to be helper and motivator, for the senior undergraduates, postgraduates, researchers, and practitioners; concepts and energy related applications are laid out, research and practical issues are backed by appropriate literature, and new trends are put under focus. For senior undergraduate students, it familiarizes with conceptual foundations and practical projects implementations. Also, it is intended for graduate students working on their thesis and in need of specific knowledge on WSNs and the related energy harvesting and management techniques. Moreover, it is targeting researchers and practitioners interested in features and applications of WSNs, and on the available energy harvesting and management projects and testbeds. Exercises at the end of each chapter are not just questions and answers; they are not limited to recapitulate ideas. Their design objective is not bound to be a methodical review of the provided concepts, but rather as a motivator for lot more of searching, finding, and comparing beyond what has been presented in the book.
This book presents the selected peer-reviewed papers from the International Conference on Communication Systems and Networks (ComNet) 2019. Highlighting the latest findings, ideas, developments and applications in all areas of advanced communication systems and networking, it covers a variety of topics, including next-generation wireless technologies such as 5G, new hardware platforms, antenna design, applications of artificial intelligence (AI), signal processing and optimization techniques. Given its scope, this book can be useful for beginners, researchers and professionals working in wireless communication and networks, and other allied fields.
This book discusses autonomous spacecraft navigation based on X-ray pulsars, analyzing how to process X-ray pulsar signals, how to simulate them, and how to estimate the pulse's time of arrival based on epoch folding. In turn, the book presents a range of X-ray pulsar-based spacecraft positioning/time-keeping/attitude determination methods. It also describes the error transmission mechanism of the X-ray pulsar-based navigation system and its corresponding compensation methods. Further, the book introduces readers to navigation based on multiple measurement information fusion, such as X-ray pulsar/traditional celestial body integrated navigation and X-ray pulsar/INS integrated navigation. As such, it offers readers extensive information on both the theory and applications of X-ray pulsar-based navigation, and reflects the latest developments in China and abroad.
This book is a collection of papers presented at the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020), held at Technical University of Sofia, Sofia, Bulgaria, during 09-11 July 2020. The book covers research papers in the field of N-dimensional multicomponent image processing, multidimensional image representation and super-resolution, 3D image processing and reconstruction, MD computer vision systems, multidimensional multimedia systems, neural networks for MD image processing, data-based MD image retrieval and knowledge data mining, watermarking, hiding and encryption of MD images, MD image processing in robot systems, tensor-based data processing, 3D and multi-view visualization, forensic analysis systems for MD images and many more.
Computer vision falls short of human vision in two respects: execution time and intelligent interpretation. This book addresses the question of execution time. It is based on a workshop on specialized processors for real-time image analysis, held as part of the activities of an ESPRIT Basic Research Action, the Working Group on Vision. The aim of the book is to examine the state of the art in vision-oriented computers. Two approaches are distinguished: multiprocessor systems and fine-grain massively parallel computers. The development of fine-grain machines has become more important over the last decade, but one of the main conclusions of the workshop is that this does not imply the replacement of multiprocessor machines. The book is divided into four parts. Part 1 introduces different architectures for vision: associative and pyramid processors as examples of fine-grain machines and a workstation with bus-oriented network topology as an example of a multiprocessor system. Parts 2 and 3 deal with the design and development of dedicated and specialized architectures. Part 4 is mainly devoted to applications, including road segmentation, mobile robot guidance and navigation, reconstruction and identification of 3D objects, and motion estimation.
The book presents selected papers from the 17th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, in conjunction with the 14th International Conference on Frontiers of Information Technology, Applications and Tools, held on October 29 - 31, 2021, in Kaohsiung, Taiwan. It is divided into two volumes and discusses latest research outcomes in the field of information technology (IT) including but not limited to information hiding, multimedia signal processing, big data, data mining, bioinformatics, database, industrial and Internet of things, and their applications.
This book reports on the latest advances in the study of biomedical signal processing, and discusses in detail a number of open problems concerning clinical, biomedical and neural signals. It methodically collects and presents in a unified form the research findings previously scattered throughout various scientific journals and conference proceedings. In addition, the chapters are self-contained and can be read independently. Accordingly, the book will be of interest to university researchers, R&D engineers and graduate students who wish to learn the core principles of biomedical signal analysis, algorithms, and applications, while also offering a valuable reference work for biomedical engineers and clinicians who wish to learn more about the theory and recent applications of neural engineering and biomedical signal processing.
This book comprises a collection of papers presented at the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2021), held at Technical University of Sofia, Sofia, Bulgaria, during 08-10 July 2021. The book covers research papers in the field of N-dimensional multicomponent image processing, multidimensional image representation and super-resolution, 3D image processing and reconstruction, MD computer vision systems, multidimensional multimedia systems, neural networks for MD image processing, data-based MD image retrieval and knowledge data mining, watermarking, hiding and encryption of MD images, MD image processing in robot systems, tensor-based data processing, 3D and multi-view visualization, forensic analysis systems for MD images and many more.
The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture Model, HMM etc. are scattered in different fields. There is the need to collect all such algorithms for quick reference. Also there is the need to view such algorithms in application point of view. Algorithm Collections for Digital Signal Processing Applications using MATLAB attempts to satisfy the above requirement. Also the algorithms are made clear using MATLAB programs.
This book introduces readers to various signal processing models that have been used in analyzing periodic data, and discusses the statistical and computational methods involved. Signal processing can broadly be considered to be the recovery of information from physical observations. The received signals are usually disturbed by thermal, electrical, atmospheric or intentional interferences, and due to their random nature, statistical techniques play an important role in their analysis. Statistics is also used in the formulation of appropriate models to describe the behavior of systems, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Analyzing different real-world data sets to illustrate how different models can be used in practice, and highlighting open problems for future research, the book is a valuable resource for senior undergraduate and graduate students specializing in mathematics or statistics.
This book explains how depth measurements from the Time-of-Flight (ToF) range imaging cameras are influenced by the electronic timing-jitter. The author presents jitter extraction and measurement techniques for any type of ToF range imaging cameras. The author mainly focuses on ToF cameras that are based on the amplitude modulated continuous wave (AMCW) lidar techniques that measure the phase difference between the emitted and reflected light signals. The book discusses timing-jitter in the emitted light signal, which is sensible since the light signal of the camera is relatively straightforward to access. The specific types of jitter that present on the light source signal are investigated throughout the book. The book is structured across three main sections: a brief literature review, jitter measurement, and jitter influence in AMCW ToF range imaging.
The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians.
This book takes a deep dive into ubiquitous computing for applications in health, business, education, tourism, and transportation. The rich interdisciplinary contents of the book appeal to readers from diverse disciplines who aspire to create new and innovative research initiatives and applications in ubiquitous computing. Topics include condition monitoring and diagnostics; multi-objective optimization in design, multi-objective optimization of machining parameters, and more. The book benefits researchers, advanced students, as well as practitioners interested in applications of ubiquitous computing. Features practical, tested applications in ubiquitous computing Includes applications such as health, business, education, electronics, tourism, and transportation Applicable to researchers, academics, students, and professionals
Machine vision systems offer great potential in a large number of areas of manufacturing industry and are used principally for Automated Visual Inspection and Robot Vision. This publication presents the state of the art in image processing. It discusses techniques which have been developed for designing machines for use in industrial inspection and robot control, putting the emphasis on software and algorithms. A comprehensive set of image processing subroutines, which together form the basic vocabulary for the versatile image processing language IIPL, is presented. This language has proved to be extremely effective, working as a design tool, in solving numerous practical inspection problems. The merging of this language with Prolog provides an even more powerful facility which retains the benefits of human and machine intelligence. The authors bring together the practical experience and the picture material from a leading industrial research laboratory and the mathematical foundations necessary to understand and apply concepts in image processing. Interactive Image Processing is a self-contained reference book that can also be used in graduate level courses in electrical engineering, computer science and physics.
This book highlights new advances in biometrics using deep learning toward deeper and wider background, deeming it "Deep Biometrics". The book aims to highlight recent developments in biometrics using semi-supervised and unsupervised methods such as Deep Neural Networks, Deep Stacked Autoencoder, Convolutional Neural Networks, Generative Adversary Networks, and so on. The contributors demonstrate the power of deep learning techniques in the emerging new areas such as privacy and security issues, cancellable biometrics, soft biometrics, smart cities, big biometric data, biometric banking, medical biometrics, healthcare biometrics, and biometric genetics, etc. The goal of this volume is to summarize the recent advances in using Deep Learning in the area of biometric security and privacy toward deeper and wider applications. Highlights the impact of deep learning over the field of biometrics in a wide area; Exploits the deeper and wider background of biometrics, such as privacy versus security, biometric big data, biometric genetics, and biometric diagnosis, etc.; Introduces new biometric applications such as biometric banking, internet of things, cloud computing, and medical biometrics.
This book discusses selected issues of modern electrical metrology in the fields of sensor technology, signal processing and measurement systems, addressing theoretical problems and applications regarding measurements in electrical engineering, mechanics, telecommunications, medicine and geology, as well as in the aviation and transport industries. It presents selected papers from the XXII International Seminar of Metrology "Methods and Techniques of Signal Processing in Physical Measurements" (MSM2018) held in Rzeszow-Arlamow, Poland on September 17-20, 2018. The conference was organized by the Rzeszow University of Technology, Department of Metrology and Diagnostic Systems (Poland) and Lviv Polytechnic National University, Department of Information Measuring Technology (Ukraine). The book provides researchers and practitioners with insights into the state of the art in these areas, and also serves as a source of new ideas for further development and cooperation.
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.
Advances in Imaging and Electron Physics, Volume 213, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
The increasing interest in the bio-impedance analysis in various fields has increased the demand for portable and low-cost impedance analyzers that can be used in the field. Simplifying the hardware is crucial to maintaining low-cost and portability, but this is not an easy task due to the need for accurate phase and magnitude measurements. This book discusses different portable impedance analyzers design techniques. Additionally, complete designs using two different approaches are reported. The first approach utilizes a commercially available single chip solution while the second one is based on a new measurement technique that eliminates the need to measure the phase by using a software algorithm to extract it from the magnitude information. Applications to the measurement of fruit bio-impedance are emphasized and compared with measurements from professional stand-alone impedance analyzers.
Understanding acoustics - the science of sound -- is essential for audio and communications engineers working in media technology. It is also extremely important for engineers to understand what allows a sound to be heard in the way it is, what makes speech intelligible, and how a particular sound is recognized within a multitude of sounds. Acoustic Signals and Hearing: A Time-Envelope and Phase Spectral Approach is unique in presenting the principles of sound and sound fields from the perspective of hearing, particularly through the use of speech and musical sounds. Acoustic Signals and Hearing: A Time-Envelope and Phase Spectral Approach is an ideal resource for researchers and acoustic engineers working in today's environment of media technology, and graduate students studying acoustics, audio engineering, and signal processing.
For undergraduate electrical, electronic or communications engineering courses. Now in its second edition, Digital Signal Processing offers modern coverage of the fundamentals, implementation and applications of digital signal processing techniques from a practical point of view.
This book enables readers to achieve ultra-low energy digital system performance. The author's main focus is the energy consumption of microcontroller architectures in digital (sub)-systems. The book covers a broad range of topics extensively: from circuits through design strategy to system architectures. The result is a set of techniques and a context to realize minimum energy digital systems. Several prototype silicon implementations are discussed, which put the proposed techniques to the test. The achieved results demonstrate an extraordinary combination of variation-resilience, high speed performance and ultra-low energy.
This book presents the complex topic of using computational intelligence for pattern recognition in a straightforward and applicable way, using Matlab to illustrate topics and concepts. The author covers computational intelligence tools like particle swarm optimization, bacterial foraging, simulated annealing, genetic algorithm, and artificial neural networks. The Matlab based illustrations along with the code are given for every topic. Readers get a quick basic understanding of various pattern recognition techniques using only the required depth in math. The Matlab program and algorithm are given along with the running text, providing clarity and usefulness of the various techniques. Presents pattern recognition and the computational intelligence using Matlab; Includes mixtures of theory, math, and algorithms, letting readers understand the concepts quickly; Outlines an array of classifiers, various regression models, statistical tests and the techniques for pattern recognition using computational intelligence. |
You may like...
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
Quantitative Atomic-Resolution Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
R5,235
Discovery Miles 52 350
Motion Correction in MR, Volume 6…
Andre Van Der Kouwe, Jalal B. Andre
Paperback
R2,924
Discovery Miles 29 240
Advances in Imaging and Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
R5,230
Discovery Miles 52 300
|