![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Signal processing
Comprehensively covers protein subcellular localization from single-label prediction to multi-label prediction, and includes prediction strategies for virus, plant, and eukaryote species. Three machine learning tools are introduced to improve classification refinement, feature extraction, and dimensionality reduction.
Signal Processing: A Mathematical Approach is designed to show how many of the mathematical tools the reader knows can be used to understand and employ signal processing techniques in an applied environment. Assuming an advanced undergraduate- or graduate-level understanding of mathematics-including familiarity with Fourier series, matrices, probability, and statistics-this Second Edition: Contains new chapters on convolution and the vector DFT, plane-wave propagation, and the BLUE and Kalman filters Expands the material on Fourier analysis to three new chapters to provide additional background information Presents real-world examples of applications that demonstrate how mathematics is used in remote sensing Featuring problems for use in the classroom or practice, Signal Processing: A Mathematical Approach, Second Edition covers topics such as Fourier series and transforms in one and several variables; applications to acoustic and electro-magnetic propagation models, transmission and emission tomography, and image reconstruction; sampling and the limited data problem; matrix methods, singular value decomposition, and data compression; optimization techniques in signal and image reconstruction from projections; autocorrelations and power spectra; high-resolution methods; detection and optimal filtering; and eigenvector-based methods for array processing and statistical filtering, time-frequency analysis, and wavelets.
An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts. Part I deals with the mathematical preliminaries: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. Part II explains realization theory as applied to subspace identification. Stochastic realization results based on spectral factorization and Riccati equations, and on canonical correlation analysis for stationary processes are included. Part III demonstrates the closed-loop application of subspace identification methods. Subspace Methods for System Identification is an excellent reference for researchers and a useful text for tutors and graduate students involved in control and signal processing courses. It can be used for self-study and will be of interest to applied scientists or engineers wishing to use advanced methods in modeling and identification of complex systems.
Continuous-Time Systems is a description of linear, nonlinear, time-invariant, and time-varying electronic continuous-time systems. As an assemblage of physical or mathematical components organized and interacting to convert an input signal (also called excitation signal or driving force) to an output signal (also called response signal), an electronic system can be described using different methods offered by the modern systems theory. To make possible for readers to understand systems, the book systematically covers major foundations of the systems theory.
This volume comprises eight well-versed contributed chapters devoted to report the latest findings on the intelligent approaches to multimedia data analysis. Multimedia data is a combination of different discrete and continuous content forms like text, audio, images, videos, animations and interactional data. At least a single continuous media in the transmitted information generates multimedia information. Due to these different types of varieties, multimedia data present varied degrees of uncertainties and imprecision, which cannot be easy to deal by the conventional computing paradigm. Soft computing technologies are quite efficient to handle the imprecision and uncertainty of the multimedia data and they are flexible enough to process the real-world information. Proper analysis of multimedia data finds wide applications in medical diagnosis, video surveillance, text annotation etc. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent state of the art.
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.
The analysis of bioelectrical signals continues to receive wide
attention in research as well as commercially because novel signal
processing techniques have helped to uncover valuable information
for improved diagnosis and therapy. This book takes a unique
problem-driven approach to biomedical signal processing by
considering a wide range of problems in cardiac and neurological
applications the two "heavyweight" areas of biomedical signal
processing. The interdisciplinary nature of the topic is reflected
in how the text interweaves physiological issues with related
methodological considerations. "Bioelectrical Signal Processing" is
suitable for a final year undergraduate or graduate course as well
as for use as an authoritative reference for practicing engineers,
physicians, and researchers.
For a one-quarter or one-semster course on Signals and Systems. This new edition delivers an accessible yet comprehensive analytical introduction to continuous-time and discrete-time signals and systems. It also incorporates a strong emphasis on solving problems and exploring concepts, using demos, downloaded data, and MATLAB(r) to demonstrate solutions for a wide range of problems in engineering and other fields such as financial data analysis. Its flexible structure adapts easily for courses taught by semester or by quarter.
For senior/graduate-level courses in Discrete-Time Signal Processing. THE definitive, authoritative text on DSP - ideal for those with an introductory-level knowledge of signals and systems. Written by prominent DSP pioneers, it provides thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete-time Fourier Analysis. By focusing on the general and universal concepts in discrete-time signal processing, it remains vital and relevant to the new challenges arising in the field. Access to the password-protected companion Website and myeBook is included with each new copy of Discrete-Time Signal Processing, Third Edition.
This book presents selected papers from the Sixteenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, in conjunction with the Thirteenth International Conference on Frontiers of Information Technology, Applications and Tools, held on November 5-7, 2020, in Ho Chi Minh City, Vietnam. It is divided into two volumes and discusses the latest research outcomes in the field of Information Technology (IT) including information hiding, multimedia signal processing, big data, data mining, bioinformatics, database, industrial and Internet of things, and their applications.
This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.
This book proceedings collects a number of papers presented at the International Conference on Sensing and Imaging, which was held at Guangxi University of Science and Technology from October 15-18, 2018. Sensing and imaging is an interdisciplinary field covering a variety of sciences and techniques such as optics, electricity, magnetism, heat, sound, and computing technologies. The field has diverse applications of interest such as image processing techniques.The results in the book bridge the gap between theory and applications, translating techniques into better products. The text will appeal to students, professionals and researchers alike.
This book describes a unique approach to bring robotic technology into elders' daily lives. Low cost components and low cost robotic assistants are effectively combined to offer high quality services to elders and people in need. The book presents in a comprehensive way how technology can be used for developing a new healthcare paradigm where high quality services are offered at home, thus reducing the ever-increasing hospitalization cost of the elders and the people with chronic diseases.
This textbook provides engineering students with instruction on processing signals encountered in speech, music, and wireless communications using software or hardware by employing basic mathematical methods. The book starts with an overview of signal processing, introducing readers to the field. It goes on to give instruction in converting continuous time signals into digital signals and discusses various methods to process the digital signals, such as filtering. The author uses MATLAB throughout as a user-friendly software tool to perform various digital signal processing algorithms and to simulate real-time systems. Readers learn how to convert analog signals into digital signals; how to process these signals using software or hardware; and how to write algorithms to perform useful operations on the acquired signals such as filtering, detecting digitally modulated signals, correcting channel distortions, etc. Students are also shown how to convert MATLAB codes into firmware codes. Further, students will be able to apply the basic digital signal processing techniques in their workplace. The book is based on the author's popular online course at University of California, San Diego.
This is the first volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book is divided into three parts, the first of which introduces readers to periodic and non-periodic signals. The second part is devoted to filtering, which is an important and commonly used application. The third part addresses more advanced topics, including the analysis of real-world non-stationary signals and data, e.g. structural fatigue, earthquakes, electro-encephalograms, birdsong, etc. The book's last chapter focuses on modulation, an example of the intentional use of non-stationary signals.
Computers are the foundation of the information age, but communication technology is the foundation of the foundation. Without the theories and practical applications of theory brought to us by the pioneers of communication, the computer age would perhaps have remained in the back office, hidden away as infrastructure like electricity or running water - critical to modern life, but not as transforming as the combination of communications and computing. The information age exploded once machines were endowed with the ability to talk among themselves. The Signal connects everything to everything else, in both communication, and in the metaphorical sense as the link between and among people. Features Identifies the key ideas underlying modern communications technology, and documents the contributions of its inventors Explores the signal in communication, and also in the metaphorical sense as the link between and among people Leads the reader through a journey from ancient number systems to Voyager II to radio and MP3s to quantum cryptography Includes coverage of "Signals from Hell," including memes and "fake news" on the Internet Looks to the future of communication, with emergent 5G
Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.
"Multiscale Signal Analysis and Modeling" presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.
Identification of Time-Varying Processes offers a comprehensive
treatment of the key issue in adaptive systems: tracking of
time-varying system parameters. Time-varying identification
techniques facilitate many challenging applications in different
areas including telecommunications (channel equalization,
predictive coding of signals, adaptive noise reduction and echo
cancellation) and automatic control (adaptive control and failure
detection). The processes also assist signal processing in areas
such as adaptive noise reduction, prediction of time series,
restoration of archive audio recordings and spectrum estimation.
Includes:
Provides technical and scientific descriptions of potential approaches used to achieve indoor positioning, ranging from sensor networks to more advanced radio-based systems This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given. Indoor Positioning: Technologies and Performance starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered--as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text: Explores aspects of indoor positioning from both theoretical and practical points of view Describes advantages and drawbacks of various approaches to positioning Provides examples of design solutions that respect specifications of tested techniques Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more Indoor Positioning is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.
The book presents basic and advanced concepts of circularly polarized antennas, including design procedure and recent applications. Cross dipole antennas, microstrip antennas, helical antennas, quadrifilar helix antennas, frequency independent antennas, horn antennas, omnidirectional circularly polarized antennas and radial line arry antennas are discussed. With abundant examples, the book is an essential reference for researchers and engineers.
Analysis, design, and realization of digital filters have experienced major developments since the 1970s, and have now become an integral part of the theory and practice in the field of contemporary digital signal processing. Digital Filter Design and Realization is written to present an up-to-date and comprehensive account of the analysis, design, and realization of digital filters. It is intended to be used as a text for graduate students as well as a reference book for practitioners in the field. Prerequisites for this book include basic knowledge of calculus, linear algebra, signal analysis, and linear system theory. Technical topics discussed in the book include: Discrete-Time Systems and z-Transformation Stability and Coefficient Sensitivity State-Space Models FIR Digital Filter Design Frequency-Domain Digital Filter Design Time-Domain Digital Filter Design Interpolated and Frequency-Response-Masking FIR Digital Filter Design Composite Digital Filter Design Finite Word Length Effects Coefficient Sensitivity Analysis and Minimization Error Spectrum Shaping Roundoff Noise Analysis and Minimization Generalized Transposed Direct-Form II Block-State Realization
There is an increasing tendency to integrate optical communication with wireless communication to satisfy continuously emerging (new) data communication demands. Thus, optical-wireless-integrated access networks and transmission systems, as well as LED-based visible light communication are attracting ever increasing research interest. Digital signal processing (DSP) is one new technology for optical transmission. As such this book is designed to pave the way to the better understanding of the deployment of DSP in optical fiber communication systems.Digital Signal Processing for High-Speed Optical Communication covers a wide area of DSP topics in optical communications, and describes state-of-the-art digital signal processing techniques for high-speed optical communication. In this book, numerous advanced digital signal processing techniques aiming at the promotion of the capacity increase and performance improvement of optical or optical-wireless communication systems and networks are presented and explained. Coverage includes new technologies, optical filter with MLSE, and new pre-coding and pre-equalization applicable to single-carrier and multi-carrier, direct-detection and coherent-detection optical commutation systems and networks.
Compressed Sensing in Li-Fi and Wi-Fi Networks features coverage of the first applications in optical telecommunications and wireless. After extensive development of basic theory, many techniques are presented, such as non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models. The book can be used as a comprehensive manual for teaching and research in courses covering advanced signal processing, efficient data processing algorithms, and telecommunications. After a thorough review of the basic theory of compressed sensing, many mathematical techniques are presented, including advanced signal modeling, Nyquist sub-sampling of analog signals, the non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models.
This textbook gives a fresh approach to an introductory course in signal processing. Its unique feature is to alternate chapters on continuous-time (analog) and discrete-time (digital) signal processing concepts in a parallel and synchronized manner. This presentation style helps readers to realize and understand the close relationships between continuous and discrete time signal processing, and lays a solid foundation for the study of practical applications such as the analysis and design of analog and digital filters.The compendium provides motivation and necessary mathematical rigor. It generalizes the Fourier transform to Laplace and Z transforms, applies these transforms to linear system analysis, covers the time and frequency-domain analysis of differential and difference equations, and presents practical applications of these techniques to convince readers of their usefulness. MATLAB (R) examples are provided throughout, and over 100 pages of solved homework problems are included in the appendix. |
You may like...
Reliability Engineering
Aniello Amendola, Amalio Saiz De Bustamante
Hardcover
R7,945
Discovery Miles 79 450
Managerial Approaches Toward Queuing…
Salvador Hernandez-Gonzalez, Manuel Dario Hernandez Ripalda
Hardcover
R4,859
Discovery Miles 48 590
Theoretical and Mathematical Foundations…
Douglas J.Crawford- Brown
Hardcover
R2,770
Discovery Miles 27 700
Portfolio Decision Analysis - Improved…
Ahti Salo, Jeffrey Keisler, …
Hardcover
R5,886
Discovery Miles 58 860
|