Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Signal processing
An engineer's introduction to concepts, algorithms, and advancements in Digital Signal Processing. This lucidly written resource makes extensive use of real-world examples as it covers all the important design and engineering references.
This book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. Also, the relationship between statistical signal processing and numerical mathematics is presented. In the second part, the theory is applied to iterative multiuser detection receivers (Turbo equalization) which are typically desired in wireless communications systems.
According to market analysts, the market for consumer electronics will con tinue to grow at a rate higher than that of electronic systems in general. The consumer market can be characterized by rapidly growing complexities of appli cations and a rather short market window. As a result, more and more complex designs have to be completed in shrinking time frames. A key concept for coping with such stringent requirements is re-use. Since the re-use of completely fixed large hardware blocks is limited to subproblems of system-level applications (for example MPEG-2), flexible, programmable pro cessors are being used as building blocks for more and more designs. Processors provide a unique combination offeatures: they provide flexibility and re-use. The processors used in consumer electronics are, however, in many cases dif ferent from those that are used for screen and keyboard-based equipment, such as PCs. For the consumer market in particular, efficiency of the product plays a dominating role. Hence, processor architectures for these applications are usually highly-optimized and tailored towards a certain application domain."
The 9th ISMM conference covered a very diverse collection of papers, bound together by the central themes of mathematical morphology, namely, the tre- ment of images in terms of set and lattice theory. Notwithstanding this central theme, this ISMM showed increasing interaction with other ?elds of image and signal processing, and several hybrid methods were presented, which combine the strengths of traditional morphological methods with those of, for example, linear ?ltering.This trendis particularlystrong in the emerging?eld of adaptive morphological ?ltering, where the local shape of structuring elements is det- mined by non-morphological techniques. This builds on previous developments of PDE-based methods in morphology and amoebas. In segmentation we see similar advancements, in the development of morphological active contours. Even within morphology itself, diversi?cation is great, and many new areas of research are being opened up. In particular, morphology of graph-based and complex-based image representations are being explored. Likewise, in the we- established area of connected ?ltering we ?nd new theory and new algorithms, but also expansion into the direction of hyperconnected ?lters. New advances in morphological machine learning, multi-valued and fuzzy morphology are also presented. Notwithstanding the often highly theoretical reputation of mathematical morphology, practitioners in this ?eld have always had an eye for the practical.
Applied Signal Processing: A MATLAB-Based Proof of Concept benefits readers by including the teaching background of experts in various applied signal processing fields and presenting them in a project-oriented framework. Unlike many other MATLAB-based textbooks which only use MATLAB to illustrate theoretical aspects, this book provides fully commented MATLAB code for working proofs-of-concept. The MATLAB code provided on the accompanying online files is the very heart of the material. In addition each chapter offers a functional introduction to the theory required to understand the code as well as a formatted presentation of the contents and outputs of the MATLAB code. Each chapter exposes how digital signal processing is applied for solving a real engineering problem used in a consumer product. The chapters are organized with a description of the problem in its applicative context and a functional review of the theory related to its solution appearing first. Equations are only used for a precise description of the problem and its final solutions. Then a step-by-step MATLAB-based proof of concept, with full code, graphs, and comments follows. The solutions are simple enough for readers with general signal processing background to understand and they use state-of-the-art signal processing principles. Applied Signal Processing: A MATLAB-Based Proof of Concept is an ideal companion for most signal processing course books. It can be used for preparing student labs and projects.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space-time coding, and mobile communications, together with associated applications to networking, storage, and communications.
High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.
Provides technical and scientific descriptions of potential approaches used to achieve indoor positioning, ranging from sensor networks to more advanced radio-based systems This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given. Indoor Positioning: Technologies and Performance starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered--as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text: Explores aspects of indoor positioning from both theoretical and practical points of view Describes advantages and drawbacks of various approaches to positioning Provides examples of design solutions that respect specifications of tested techniques Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more Indoor Positioning is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.
This book deals with the problem of detecting and localizing multiple simultaneously active wideband acoustic sources by applying the notion of wavefield decomposition using circular and spherical microphone arrays. A rigorous derivation of modal array signal processing algorithms for unambiguous source detection and localization, as well as performance evaluations by means of measurements using an actual real-time capable implementation, are discussed.
The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians.
Practical emphasis to teach students to use the powerful ideas of adaptive control in real applications Custom-made Matlab(r) functionality to facilitate the design and construction of self-tuning controllers for different processes and systems Examples, tutorial exercises and clearly laid-out flowcharts and formulae to make the subject simple to follow for students and to help tutors with class preparation
Teaches students about classical and nonclassical adaptive systems within one pair of covers Helps tutors with time-saving course plans, ready-made practical assignments and examination guidance The recently developed "practical sub-space adaptive filter" allows the reader to combine any set of classical and/or non-classical adaptive systems to form a powerful technology for solving complex nonlinear problems
This book describes a completely novel mathematical development which has already influenced probability theory, and has potential for application to engineering and to areas of pure mathematics.
The Complete "Tool Kit" for the Hottest Area in RF/Wireless Design!
This book deals with various theoretical and practical methods for real-time automatic signal processing in local (and regional) seismic networks and associated software developments, including extraction of small seismic signal from noisy observation by piecewise modeling and self-organizing state space modeling, determination of arrival time of S wave by locally multivariate stationary AT modeling, automatic interpretation of seismic signal by combining cumulativ sum and simulative annealing (CUSUM-SA), AR-filtering for local and teleseismic events, the currently high sensitivity seismic network running in Japan (Hi-net), PC-based computer package for automatic detection and location of earthquakes, real-time automatic seismic data-processing in seismic network running in eastern Sicily (Italy), the SIL (South Iceland Lowland) seismological data acquisition system and routine analysis in Iceland and Sweden.
Modern information systems must handle huge amounts of data having varied natural or technological origins. Automated processing of these increasing signal loads requires the training of specialists capable of formalising the problems encountered. This book supplies a formalised, concise presentation of the basis of statistical signal processing. Equal emphasis is placed on approaches related to signal modelling and to signal estimation. In order to supply the reader with the desirable theoretical fundamentals and to allow him to make progress in the discipline, the results presented here are carefully justified. The representation of random signals in the Fourier domain and their filtering are considered. These tools enable linear prediction theory and related classical filtering techniques to be addressed in a simple way. The spectrum identification problem is presented as a first step toward spectrum estimation, which is studied in non-parametric and parametric frameworks. The later chapters introduce synthetically further advanced techniques that will enable the reader to solve signal processing problems of a general nature. Rather than supplying an exhaustive description of existing techniques, this book is designed for students, scientists and research engineers interested in statistical signal processing and who need to acquire the necessary grounding to address the specific problems with which they may be faced. It also supplies a well-organized introduction to the literature. The CD-ROM contains MATLAB programs in HTML format and is intended to provide simulation examples (program listings + simulation results) In addition, it also presents some basics of probability.
Multimodal Interfaces represents an emerging interdisciplinary research direction and has become one of the frontiers in Computer Science. Multimodal interfaces aim at efficient, convenient and natural interaction and communication between computers (in their broadest sense) and human users. They will ultimately enable users to interact with computers using their everyday skills. These proceedings include the papers accepted for presentation at the Third International Conference on Multimodal Interfaces (ICMI 2000) held in Beijing, China on 1416 O ctober 2000. The papers were selected from 172 contributions submitted worldwide. Each paper was allocated for review to three members of the Program Committee, which consisted of more than 40 leading researchers in the field. Final decisions of 38 oral papers and 48 poster papers were made based on the reviewers' comments and the desire for a balance of topics. The decision to have a single track conference led to a competitive selection process and it is very likely that some good submissions are not included in this volume. The papers collected here cover a wide range of topics such as affective and perceptual computing, interfaces for wearable and mobile computing, gestures and sign languages, face and facial expression analysis, multilingual interfaces, virtual and augmented reality, speech and handwriting, multimodal integration and application systems. They represent some of the latest progress in multimodal interfaces research.
The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field s point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.
This text is intended to be used by postgraduate and advanced undergraduate students in the study of discrete-time integrals. It focuses on an algebraic approach to the analysis and design of discrete-time signal processing algorithms which renders the Laplace and z-transforms redundant for this purpose. While the material on difference equations is developed slowly, from an elementary base, it is assumed that the reader has a working knowledge of complex numbers and has completed a first course in vector and matrix analysis. Various subjects and problems are discussed including: - The solution of both difference and state space equations - Provides an alternative approach to the use of Laplace and z-transformations - Linear-algebraic ideas for the analysis and design of linear signals - The Design of recursive (IIR) and nonrecursive (FIR) digital filters - The design of classical Butterworth, Chebyshev and Elliptical analog filters and the transformation of analog filters - The Discrete Fourier Transform and its implementation through the Fast Fourier Transform - Applications of least-squares analysis to the design of linear phase FIR filters, convolution (FIR and IIR) signal models, and state space signal models - Design of digital filters via discrete approximation of analog filters, digital transformation of analog filter, and digital transformation of digital filter - Finite wordlength (FWL) implementation of IIR digital filters including the basic properties of both fixed and floating point arithmetic representations, implication of arithmetic quantizations and filter structure on accuracy and speed of real-time implementation - Written with clarity and containing the latest, detailed results based on comprehensive research, this book is an important textbook for all students interested in discrete-time signals - The text supports the use of algebra-based software packages, such as MATLAB .
This book consitutes the refereed joint proceedings of the First European Workshop on Evolutionary Computation in Image Analysis and Signal Processing, EvoIASP '99 and of the First European Workshop on Evolutionary Telecommunications, EuroEcTel '99, held in G teborg, Sweden in May 1999. The 18 revised full papers presented were carefully reviewed and selected for inclusion in the volume. The book presents state-of-the-art research results applying techniques from evolutionary computing in the specific application areas.
These proceedings contain papers presented at the 8th Discrete Geometry for Computer Imagery conference, held 17-19, March 1999 at ESIEE, Marne-la- Vall ee. The domains of discrete geometry and computer imagery are closely related. Discrete geometry provides both theoretical and algorithmic models for the p- cessing, analysis and synthesis of images; in return computer imagery, in its variety of applications, constitutes a remarkable experimentational eld and is a source of challenging problems. The number of returning participants, the arrival each year of contributions from new laboratories and new researchers, as well as the quality and originality of the results have contributed to the success of the conference and are an - dication of the dynamism of this eld. The DGCI has become one of the major conferences related to this topic, including participating researchers and la- ratories from all over the world. Of the 41 papers received this year, 24 have been selected for presentation and 7 for poster sessions. In addition to these, four invited speakers have contributed to the conference. The site of Marne-la-Vall ee, just 20 min away from Paris, is particularly we- suited to hold the conference. Indeed, as a newly built city, it showcases a great amount of modern creative architecture, whose pure lines and original shapes o er a favorable context for the topic of Geometry.
This volume is the Proceedings of the First International Conference on Advanced Multimedia Content Processing (AMCP 98). With the remarkable advances made in computer and communication hardware/software system technologies, we can now easily obtain large volumes of multimedia data through advanced computer networks and store and handle them in our own personal hardware. Sophisticated and integrated multimedia content processing technologies, which are essential to building a highly advanced information based society, are attracting ever increasing attention in various service areas, including broadcasting, publishing, medical treatment, entertainment, and communications. The prime concerns of these technologies are how to acquire multimedia content data from the real world, how to automatically organize and store these obtained data in databases for sharing and reuse, and how to generate and create new, attractive multimedia content using the stored data. This conference brings together researchers and practitioners from academia, in dustry, and public agencies to present and discuss recent advances in the acquisition, management, retrieval, creation, and utilization of large amounts of multimedia con tent. Artistic and innovative applications through the active use of multimedia con tent are also subjects of interest. The conference aims at covering the following par ticular areas: (1) Dynamic multimedia data modeling and intelligent structuring of content based on active, bottom up, and self organized strategies. (2) Access archi tecture, querying facilities, and distribution mechanisms for multimedia content."
This volume and the accompanying software describe and demonstrate all the basics and fundamentals of modern computer graphics. After an overview of computer graphics, the following chapters--complete with discussions and exercises--are devoted to modeling of 3D objects with polygons and wireframes; animation of modeled objects; and rendering of photorealistic images from the modeled objects, including lighting, shading, and texture mapping. After modeling, animating, and rendering, coverage details how to add special effects such as warping, bending, or morphing, as described in the chapter on image manipulation and postproduction. The book concludes with a look into the future of computer graphics and an overview of computer graphics in various fields. The CD-ROM software includes a complete 3D graphics application with a user-friendly graphical interface, which can be used to perform all the exercises in the book. |
You may like...
Signals and Systems - Pearson New…
Alan Oppenheim, Alan Willsky, …
Paperback
R2,563
Discovery Miles 25 630
Digital Signal Processing - Pearson New…
John Proakis, Dimitris Manolakis
Paperback
R2,604
Discovery Miles 26 040
Signals and Systems - Pearson New…
Rodger Ziemer, William Tranter, …
Paperback
R2,180
Discovery Miles 21 800
Structural Health Monitoring from…
Magd Abdel Wahab, Yun Lai Zhou, …
Hardcover
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
|