Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Signal processing
Signal processing is a broad and timeless area. The term "signal" includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, and more. Signal processing applies to the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
Synthesis of Computational Structures for Analog Signal Processing
focuses on analysis and design of analog signal processing
circuits. The author presents a multitude of design techniques for
improving the performances of analog signal processing circuits,
and proposes specific implementation strategies that can be used in
CMOS technology. The author's discussion proceeds from the
perspective of signal processing as it relates to analog. Included
are coverage of low-power design, portable equipment, wireless
nano-sensors and medical implantable devices.
Presenting statistical and stochastic methods for the analysis and design of technological systems in engineering and applied areas, this work documents developments in statistical modelling, identification, estimation and signal processing. The book covers such topics as subspace methods, stochastic realization, state space modelling, and identification and parameter estimation.
This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means. Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader's area of interest, or read together to provide a comprehensive overview of the topic. Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autonomous vehicles, wireless technology, and historical conservation.
Photoplethysmography: Technology, Signal Analysis, and Applications is the first comprehensive volume on the theory, principles, and technology (sensors and electronics) of photoplethysmography (PPG). It provides a detailed description of the current state-of-the-art technologies/optical components enabling the extreme miniaturization of such sensors, as well as comprehensive coverage of PPG signal analysis techniques including machine learning and artificial intelligence. The book also outlines the huge range of PPG applications in healthcare, with a strong focus on the contribution of PPG in wearable sensors and PPG for cardiovascular assessment.
Wavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool.
Fractional-order Modelling of Dynamic Systems with Applications in Optimization, Signal Processing and Control introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems.
Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource.
Starting with an overview of current research progresses on multiple access technology, the book then presents the theoretical fundamentals, technical principles, transmission scheme, key technologies and evaluation results of new multi-access technologies, especially focusing on its typical applications 5G communication systems. With extensive practical cases, it is an essential reference for researchers, engineers and graduate students.
The Beginnings of Electron Microscopy - Part 1, Volume 220 in the Advances in Imaging and Electron Physics series highlights new advances in the field, with this new volume presenting interesting chapters on Electron-optical Research at the AEG Forschungs-Institut 1928-1940, On the History of Scanning Electron Microscopy, of the Electron Microprobe, and of Early Contributions to Transmission Electron Microscopy, Random Recollections of the Early Days, Early History of Electron Microscopy in Czechoslovakia, Personal Reminiscences of Early Days in Electron, Megavolt Electron Microscopy, Cryo-Electron Microscopy and Ultramicrotomy: Reminiscences and Reflections, and much more.
This book gathers outstanding research papers presented at the International Joint Conference on Computational Intelligence (IJCCI 2019), held at the University of Liberal Arts Bangladesh (ULAB), Dhaka, on 25-26 October 2019 and jointly organized by the University of Liberal Arts Bangladesh (ULAB), Bangladesh; Jahangirnagar University (JU), Bangladesh; and South Asian University (SAU), India. These proceedings present novel contributions in the areas of computational intelligence, and offer valuable reference material for advanced research. The topics covered include collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
This book presents the selected peer-reviewed papers from the International Conference on Communication Systems and Networks (ComNet) 2019. Highlighting the latest findings, ideas, developments and applications in all areas of advanced communication systems and networking, it covers a variety of topics, including next-generation wireless technologies such as 5G, new hardware platforms, antenna design, applications of artificial intelligence (AI), signal processing and optimization techniques. Given its scope, this book can be useful for beginners, researchers and professionals working in wireless communication and networks, and other allied fields.
An Introduction to Audio Content Analysis Enables readers to understand the algorithmic analysis of musical audio signals with AI-driven approaches An Introduction to Audio Content Analysis serves as a comprehensive guide on audio content analysis explaining how signal processing and machine learning approaches can be utilized for the extraction of musical content from audio. It gives readers the algorithmic understanding to teach a computer to interpret music signals and thus allows for the design of tools for interacting with music. The work ties together topics from audio signal processing and machine learning, showing how to use audio content analysis to pick up musical characteristics automatically. A multitude of audio content analysis tasks related to the extraction of tonal, temporal, timbral, and intensity-related characteristics of the music signal are presented. Each task is introduced from both a musical and a technical perspective, detailing the algorithmic approach as well as providing practical guidance on implementation details and evaluation. To aid in reader comprehension, each task description begins with a short introduction to the most important musical and perceptual characteristics of the covered topic, followed by a detailed algorithmic model and its evaluation, and concluded with questions and exercises. For the interested reader, updated supplemental materials are provided via an accompanying website. Written by a well-known expert in the music industry, sample topics covered in Introduction to Audio Content Analysis include: Digital audio signals and their representation, common time-frequency transforms, audio features Pitch and fundamental frequency detection, key and chord Representation of dynamics in music and intensity-related features Beat histograms, onset and tempo detection, beat histograms, and detection of structure in music, and sequence alignment Audio fingerprinting, musical genre, mood, and instrument classification An invaluable guide for newcomers to audio signal processing and industry experts alike, An Introduction to Audio Content Analysis covers a wide range of introductory topics pertaining to music information retrieval and machine listening, allowing students and researchers to quickly gain core holistic knowledge in audio analysis and dig deeper into specific aspects of the field with the help of a large amount of references.
The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter.
This book discusses autonomous spacecraft navigation based on X-ray pulsars, analyzing how to process X-ray pulsar signals, how to simulate them, and how to estimate the pulse's time of arrival based on epoch folding. In turn, the book presents a range of X-ray pulsar-based spacecraft positioning/time-keeping/attitude determination methods. It also describes the error transmission mechanism of the X-ray pulsar-based navigation system and its corresponding compensation methods. Further, the book introduces readers to navigation based on multiple measurement information fusion, such as X-ray pulsar/traditional celestial body integrated navigation and X-ray pulsar/INS integrated navigation. As such, it offers readers extensive information on both the theory and applications of X-ray pulsar-based navigation, and reflects the latest developments in China and abroad.
Advances in Imaging and Electron Physics, Volume 219, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
This book focuses on broadband power amplifier design for wireless communication. Nonlinear model embedding is described as a powerful tool for designing broadband continuous Class-J and continuous class F power amplifiers. The authors also discuss various techniques for extending bandwidth of load modulation based power amplifiers, such as Doherty power amplifier and Chireix outphasing amplifiers. The book also covers recent trends on digital as well as analog techniques to enhance bandwidth and linearity in wireless transmitters. Presents latest trends in designing broadband power amplifiers; Covers latest techniques for using nonlinear model embedding in designing power amplifiers based on waveform engineering; Describes the latest techniques for extending bandwidth of load modulation based power amplifiers such as Doherty power amplifier and Chireix outphasing amplifiers; Includes coverage of hybrid analog/digital predistortion as wideband solution for wireless transmitters; Discusses recent trends on on-chip power amplifier design with GaN /GaAs MMICs for high frequency applications.
This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson's; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.
Advances in Imaging and Electron Physics, Volume 218 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more.
This textbook presents an introduction to communication systems with an emphasis on signal design and modulation. The book carefully develops the mathematical principles upon which such systems are based, using examples from a wide variety of current communications systems wherever possible. These range from commercial broadcasting and telephone systems to satellite telemetry and radar.
This book reports on the latest advances in the study of biomedical signal processing, and discusses in detail a number of open problems concerning clinical, biomedical and neural signals. It methodically collects and presents in a unified form the research findings previously scattered throughout various scientific journals and conference proceedings. In addition, the chapters are self-contained and can be read independently. Accordingly, the book will be of interest to university researchers, R&D engineers and graduate students who wish to learn the core principles of biomedical signal analysis, algorithms, and applications, while also offering a valuable reference work for biomedical engineers and clinicians who wish to learn more about the theory and recent applications of neural engineering and biomedical signal processing.
Quantitative Atomic-Resolution Electron Microscopy, Volume 217, the latest release in the Advances in Imaging and Electron Physics series merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods. Chapters in this release include Statistical parameter estimation theory, Efficient fitting algorithm, Statistics-based atom counting , Atom column detection, Optimal experiment design for nanoparticle atom-counting from ADF STEM images, and more.
This book presents the complex topic of using computational intelligence for pattern recognition in a straightforward and applicable way, using Matlab to illustrate topics and concepts. The author covers computational intelligence tools like particle swarm optimization, bacterial foraging, simulated annealing, genetic algorithm, and artificial neural networks. The Matlab based illustrations along with the code are given for every topic. Readers get a quick basic understanding of various pattern recognition techniques using only the required depth in math. The Matlab program and algorithm are given along with the running text, providing clarity and usefulness of the various techniques. Presents pattern recognition and the computational intelligence using Matlab; Includes mixtures of theory, math, and algorithms, letting readers understand the concepts quickly; Outlines an array of classifiers, various regression models, statistical tests and the techniques for pattern recognition using computational intelligence.
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: * Highlights signal processing and machine learning as key approaches to quantitative finance. * Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. * Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. * Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
|
You may like...
LabVIEW - A Flexible Environment for…
Riccardo de Asmundis
Hardcover
Advanced Signal Processing for Industry…
Irshad Ahmad Ansari, Varun Bajaj
Hardcover
R3,230
Discovery Miles 32 300
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
X-ray Pulsar-based Navigation - Theory…
Wei Zheng, Yidi Wang
Hardcover
R2,802
Discovery Miles 28 020
Digital Signal Processing - Pearson New…
John Proakis, Dimitris Manolakis
Paperback
R2,604
Discovery Miles 26 040
|