![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Signal processing
Corpus Annotation gives an up-to-date picture of this fascinating new area of research, and will provide essential reading for newcomers to the field as well as those already involved in corpus annotation. Early chapters introduce the different levels and techniques of corpus annotation. Later chapters deal with software developments, applications, and the development of standards for the evaluation of corpus annotation. While the book takes detailed account of research world-wide, its focus is particularly on the work of the UCREL (University Centre for Computer Corpus Research on Language) team at Lancaster University, which has been at the forefront of developments in the field of corpus annotation since its beginnings in the 1970s.
This text deals with signal processing as an important aspect of
electronic communications in its role of transmitting information,
and the language of its expression. It develops the required
mathematics in an interesting and informative way, leading to
confidence on the part of the reader. The first part of the book
focuses on continuous-time models, and contains chapters on signals
and linear systems, and on system responses. Fourier methods, so
vital in the study of information theory, are developed prior to a
discussion of methods for the design of analogue filters. The
second part of the book is directed towards discrete-time signals
and systems. There is full development of the z- and discrete
Fourier transforms to support the chapter on digital filter design.
First Published in 1997. Routledge is an imprint of Taylor & Francis, an informa company.
This textbook presents an introduction to signal processing for audio applications. The author's approach posits that math is at the heart of audio processing and that it should not be simplified. He thus retains math as the core of signal processing and includes concepts of difference equations, convolution, and the Fourier Transform. Each of these is presented in a context where they make sense to the student and can readily be applied to build artifacts. Each chapter in the book builds on the previous ones, building a linear, coherent story. The book starts with a definition of sound and goes on to discuss digital audio signals, filters, The Fourier Transform, audio effects, spatial effects, audio equalizers, dynamic range control, and pitch estimation. The exercises in each chapter cover the application of the concepts to audio signals. The exercises are made specifically for Pure Data (Pd) although traditional software, such as MATLAB, can be used. The book is intended for students in media technology bachelor programs. The book is based on material the author developed teaching on the topic over a number of years.
Random Signals, Noise and Filtering develops the theory of random processes and its application to the study of systems and analysis of random data. The text covers three important areas: (1) fundamentals and examples of random process models, (2) applications of probabilistic models: signal detection, and filtering, and (3) statistical estimation--measurement and analysis of random data to determine the structure and parameter values of probabilistic models. This volume by Breipohl and Shanmugan offers the only one-volume treatment of the fundamentals of random process models, their applications, and data analysis.
This volumes discusses various aspects regarding the capacity/achievable data rate of stationary Rayleigh fading channels. First, it analyses bounds on the achievable data rate with zero-mean proper Gaussian input symbols, which are capacity achieving in the coherent case, i.e., in case of perfect channel knowledge at the receiver. These bounds are tight in the sense that the difference between the upper and the lower bound is bounded for all SNRs. The lower bound converges to the coherent capacity for asymptotically small channel dynamics. Furthermore, these bounds are extended to the case of multiple-input multiple-output (MIMO) channels and to the case of frequency selective channels. In a further part, the present work studies the achievable rate with receivers based on synchronized detection and a code-aided channel estimation. For a specific type of such a receiver an approximate upper bound on the achievable rate is derived. The comparison of this approximate upper bound and the achievable data rate with receivers using synchronized detection based on a solely pilot based channel estimation gives an approximate upper bound on the possible gain by using this kind of code-aided channel estimation in comparison to the conventional receiver using a solely pilot based channel estimation. In addition, the achievable data rate with an optimal joint processing of pilot and data symbols is studied and a lower bound on the achievable rate for this case is derived. In this context, it is also shown which part of the mutual information of the transmitter and the receiver is discarded when using the conventional receiver with synchronized detection based on a solely pilot based channel estimation.
Case-based reasoning in design is becoming an important approach to
computer-support for design as well as an important component in
understanding the design process. Design has become a major focus
for problem solving paradigms due to its complexity and open-ended
nature. This book presents a clear description of how case-based
reasoning can be applied to design problems, including the
representation of design cases, indexing and retrieving design
cases, and the range of paradigms for adapting design cases. With a
focus on design, this book differs from others that provide a
generalist view of case-based reasoning.
The parameter estimation and hypothesis testing are the basic tools in statistical inference. These techniques occur in many applications of data processing., and methods of Monte Carlo have become an essential tool to assess performance. For pedagogical purposes the book includes several computational problems and exercices. To prevent students from getting stuck on exercises, detailed corrections are provided.
Sixth in the book series, Advances in Image Communication, which documents the rapid advancements of recent years in image communication technologies, this volume provides a comprehensive exploration of subband coding. Originally, subband coding and transform coding were developed separately. The former, however, benefitted considerably from the earlier evolution of transform coding theory and practice. Retaining their own terminology and views, the two methods are closely related and this book indeed aims to unify the approaches. Specifically, the volume contributes effectively to the understanding of frequency domain coding techniques. Many images from coding experiments are presented, enabling the reader to consider the properties of different coders. Chapter 1 introduces the problem of image compression in general terms. Sampling of images and other fundamental concepts, such as entropy and the rate distortion function, are briefly reviewed. The idea of viewing coding techniques as series expansions is also introduced. The second chapter presents signal decomposition and the conditions for perfect reconstruction from minimum representations. Chapter 3 deals with filter bank structures, primarily those displaying the perfect reconstruction property. Quantization techniques and the efficient exploitation of the bit resources are discussed from a theoretical perspective in Chapter 4 and this issue is further examined in Chapter 6, from a more practical point of view. Chapter 5 provides a development of gain formulas, i.e. quantitative measures of the performance of filter banks in a subband coding context, and these are then employed in a search for optimal filter banks. A number of examples of coded images using different subband coders are presented in Chapter 7, these indicating that subband coders give rise to some characteristic types of image degradations. Accordingly, Chapter 8 presents several techniques for minimizing these artifacts. The theory and practice of subband coding of video, at several target bit rates, is discussed in the last chapter.
Providing a wealth of information on fundamental topics in the areas of linear air and underwater acoustics, as well as space-time signal processing, this book provides real-world design and analysis equations. As a consequence of the interdisciplinary nature of air and underwater acoustics, the book is divided into two parts: Acoustic Field Theory and Space-Time Signal Processing. It covers the fundamentals of acoustic wave propagation as well as the fundamentals of aperture theory, array theory, and signal processing. Starting with principles and using a consistent, mainly standard notation, this book develops, in detail, basic results that are useful in a variety of air and underwater acoustic applications. Numerous figures, examples, and problems are included.
This volume is an extended description of continuous-time signals related to the course of Signals and Systems. As a time-varying process of any physical state of any object, which serves for representation, detection, and transmission of messages, a modern electrical signal possesses, in applications, many specific properties. To make possible for readers to deal with signals free, the book systematically covers major principle foundations of the signals theory. The representation of signals in the frequency domain (by Fourier transform) is considered with strong emphasis on how the spectral density of a single waveform becomes that of its burst and then the spectrum of its train. Different kinds of amplitude and angular modulations are analyzed noticing a consistency between the spectra of modulating and modulated signals. The energy and power presentation of signals is given along with their correlation properties.
This unique reference presents in-depth coverage of the latest methods and applications of digital image processing describing various computer architectures ideal for satisfying specific image processing demands.
In the area of Digital Image Processing the new area of "Time-Varying Image Processing and Moving Oject Recognition" is contributing to impressive advances in several fields. Presented in this volume are new digital image processing and recognition methods, implementation techniques and advanced applications such as television, remote sensing, biomedicine, traffic, inspection, and robotics. New approaches (such as digital transforms, neural networks) for solving 2-D and 3-D problems are described. Many papers concentrate on motion estimation and recognition i.e. tracking of moving objects. Overall, the book describes the state-of-the-art (theory, implementation, applications) of this developing area, together with future trends. The work will be of interest not only to researchers, professors and students in university departments of engineering, communications, computers and automatic control, but also to engineers and managers of industries concerned with computer vision, manufacturing, automation, robotics and quality control.
Optimal and Adaptive Signal Processing covers the theory of optimal and adaptive signal processing using examples and computer simulations drawn from a wide range of applications, including speech and audio, communications, reflection seismology and sonar systems. The material is presented without a heavy reliance on mathematics and focuses on one-dimensional and array processing results, as well as a wide range of adaptive filter algorithms and implementations. Topics discussed include random signals and optimal processing, adaptive signal processing with the LMS algorithm, applications of adaptive filtering, algorithms and structures for adaptive filtering, spectral analysis, and array signal processing.
This book covers random signals and random processes along with estimation of probability density function, estimation of energy spectral density and power spectral density. The properties of random processes and signal modelling are discussed with basic communication theory estimation and detection. MATLAB simulations are included for each concept with output of the program with case studies and project ideas. The chapters progressively introduce and explain the concepts of random signals and cover multiple applications for signal processing. The book is designed to cater to a wide audience starting from the undergraduates (electronics, electrical, instrumentation, computer, and telecommunication engineering) to the researchers working in the pertinent fields. Key Features: * Aimed at random signal processing with parametric signal processing-using appropriate segment size. * Covers speech, image, medical images, EEG and ECG signal processing. * Reviews optimal detection and estimation. * Discusses parametric modeling and signal processing in transform domain. * Includes MATLAB codes and relevant exercises, case studies and solved examples including multiple choice questions
Presents the statistical analysis of morphological filters and their automatic optical design, the development of morphological features for image signatures, and the design of efficient morphological algorithms. Extends the morphological paradigm to include other branches of science and mathematics.;This book is designed to be of interest to optical, electrical and electronics, and electro-optic engineers, including image processing, signal processing, machine vision, and computer vision engineers, applied mathematicians, image analysts and scientists and graduate-level students in image processing and mathematical morphology courses.
Presents basic theories, techniques, and procedures used to analyze, design, and implement two-dimensional filters; and surveys a number of applications in image and seismic data processing that demonstrate their use in real-world signal processing. For graduate students in electrical and computer e
This book is primarily intended for junior-level students who take the courses on 'signals and systems'. It may be useful as a reference text for practicing engineers and scientists who want to acquire some of the concepts required for signal proce- ing. The readers are assumed to know the basics about linear algebra, calculus (on complex numbers, differentiation, and integration), differential equations, Laplace R transform, and MATLAB . Some knowledge about circuit systems will be helpful. Knowledge in signals and systems is crucial to students majoring in Electrical Engineering. The main objective of this book is to make the readers prepared for studying advanced subjects on signal processing, communication, and control by covering from the basic concepts of signals and systems to manual-like introduc- R R tions of how to use the MATLAB and Simulink tools for signal analysis and lter design. The features of this book can be summarized as follows: 1. It not only introduces the four Fourier analysis tools, CTFS (continuous-time Fourier series), CTFT (continuous-time Fourier transform), DFT (discrete-time Fourier transform), and DTFS (discrete-time Fourier series), but also illuminates the relationship among them so that the readers can realize why only the DFT of the four tools is used for practical spectral analysis and why/how it differs from the other ones, and further, think about how to reduce the difference to get better information about the spectral characteristics of signals from the DFT analysis.
The book discusses subjective ratings of quality and preference of unknown voices and dialog partners - their likability, for example. Human natural and artificial voices are studied in passive listening and interactive scenarios. In this book, the background, state of research, and contributions to the assessment and prediction of talker quality that is constituted in voice perception and in dialog are presented. Starting from theories and empirical findings from human interaction, major results and approaches are transferred to the domain of human-computer interaction (HCI). The main objective of this book is to contribute to the evaluation of spoken interaction in humans and between humans and computers, and in particular to the quality subsequently attributed to the speaking system or person based on the listening and interactive experience. Provides a comprehensive overview of research in evaluation of speakers and dialog partners; Presents recent results on the relevance of a first passive and interactive impression; Includes human and HCI evaluation results from a communicative perspective.
This "bible" of a whole generation of communications engineers was
originally published in 1958. The focus is on the statistical
theory underlying the study of signals and noises in communications
systems, emphasizing techniques as well s results. End of chapter
problems are provided.
This book offers an introduction to digital signal processing (DSP) with an emphasis on audio signals and computer music. It covers the mathematical foundations of DSP, important DSP theories including sampling, LTI systems, the z-transform, FIR/IIR filters, classic sound synthesis algorithms, various digital effects, topics in time and frequency-domain analysis/synthesis, and associated musical/sound examples. Whenever possible, pictures and graphics are included when presenting DSP concepts of various abstractions. To further facilitate understanding of ideas, a plethora of MATLAB (R) code examples are provided, allowing the reader tangible means to "connect dots" via mathematics, visuals, as well as aural feedback through synthesis and modulation of sound. This book is designed for both technically and musically inclined readers alike-folks with a common goal of exploring digital signal processing.
Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.
Adaptive Control (second edition) shows how a desired level of system performance can be maintained automatically and in real time, even when process or disturbance parameters are unknown and variable. It is a coherent exposition of the many aspects of this field, setting out the problems to be addressed and moving on to solutions, their practical significance and their application. Discrete-time aspects of adaptive control are emphasized to reflect the importance of digital computers in the application of the ideas presented. The second edition is thoroughly revised to throw light on recent developments in theory and applications with new chapters on: multimodel adaptive control with switching, direct and indirect adaptive regulation and adaptive feedforward disturbance compensation. Many algorithms are newly presented in MATLAB (R) m-file format to facilitate their employment in real systems. Classroom-tested slides for instructors to use in teaching this material are also now provided. All of this supplementary electronic material can be downloaded from fill in URL. The core material is also up-dated and re-edited to keep its perspective in line with modern ideas and more closely to associate algorithms with their applications giving the reader a solid grounding in: synthesis and analysis of parameter adaptation algorithms, recursive plant model identification in open and closed loop, robust digital control for adaptive control; * robust parameter adaptation algorithms, practical considerations and applications, including flexible transmission systems, active vibration control and broadband disturbance rejection and a supplementary introduction on hot dip galvanizing and a phosphate drying furnace. Control researchers and applied mathematicians will find Adaptive Control of significant and enduring interest and its use of example and application will appeal to practitioners working with unknown- and variable-parameter plant. Praise for the first edition: ...well written, interesting and easy to follow, so that it constitutes a valuable addition to the monographies in adaptive control for discrete-time linear systems... suitable (at least in part) for use in graduate courses in adaptive control.
The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.
Designed to cover the fundamental concepts of digital signal processing, the book introduces topics such as discrete-time signals, the z-transform, frequency analysis, discrete and fast Fourier transforms, digital filters, FIR, statistical DSP, applications, and more. DSP has been applied in most disciplines ranging from engineering to telecommunications, and from astronomy to medical imaging. This book focuses on the fundamentals of DSP, namely on the representation of signals by mathematical models and on the processing of signals by discrete-time systems. Features Designed to cover the fundamental concepts of DSP Introduces topics such as discrete-time signals, the z-transform, frequency analysis, discrete and fast Fourier transforms, digital filters, FIR, statistical DSP, applications, and more Features a variety of exercises and a glossary |
![]() ![]() You may like...
This Will Not Pass - Trump, Biden, And…
Jonathan Martin, Alexander Burns
Hardcover
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
|