Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Signal processing
This book presents a synthesis of the research carried out in the Laboratory of Signal Processing and Communications (LaPSyC), CONICET, Universidad Nacional del Sur, Argentina, since 2003. It presents models and techniques widely used by the signal processing community, focusing on low-complexity methodologies that are scalable to different applications. It also highlights measures of the performance and impact of each compensation technique. The book is divided into three parts: 1) basic models 2) compensation techniques and 3) applications in advanced technologies. The first part addresses basic architectures of transceivers, their component blocks and modulation techniques. It also describes the performance to be taken into account, regardless of the distortions that need to be compensated. In the second part, several schemes of compensation and/or reduction of imperfections are explored, including linearization of power amplifiers, compensation of the characteristics of analog-to- digital converters and CFO compensation for OFDM modulation. The third and last part demonstrates the use of some of these techniques in modern wireless-communication systems, such as full-duplex transmission, massive MIMO schemes and Internet of Things applications.
Intelligent Image and Video Compression: Communicating Pictures, Second Edition explains the requirements, analysis, design and application of a modern video coding system. It draws on the authors' extensive academic and professional experience in this field to deliver a text that is algorithmically rigorous yet accessible, relevant to modern standards and practical. It builds on a thorough grounding in mathematical foundations and visual perception to demonstrate how modern image and video compression methods can be designed to meet the rate-quality performance levels demanded by today's applications and users, in the context of prevailing network constraints. "David Bull and Fan Zhang have written a timely and accessible book on the topic of image and video compression. Compression of visual signals is one of the great technological achievements of modern times, and has made possible the great successes of streaming and social media and digital cinema. Their book, Intelligent Image and Video Compression covers all the salient topics ranging over visual perception, information theory, bandpass transform theory, motion estimation and prediction, lossy and lossless compression, and of course the compression standards from MPEG (ranging from H.261 through the most modern H.266, or VVC) and the open standards VP9 and AV-1. The book is replete with clear explanations and figures, including color where appropriate, making it quite accessible and valuable to the advanced student as well as the expert practitioner. The book offers an excellent glossary and as a bonus, a set of tutorial problems. Highly recommended!" --Al Bovik
State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:
Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
A proven, cost-effective approach to solving analog signal processing design problems Most design problems involving analog circuits require a great deal of creativity to solve. But, as the authors of this groundbreaking guide demonstrate, finding solutions to most analog signal processing problems does not have to be that difficult. Analog Signal Processing presents an original, five-step, design-oriented approach to solving analog signal processing problems using standard ICs as building blocks. Unlike most authors who prescribe a "bottom-up" approach, Professors Pallás-Areny and Webster cast design problems first in functional terms and then develop possible solutions using available ICs, focusing on circuit performance rather than internal structure. The five steps of their approach move from signal classification, definition of desired functions, and description of analog domain conversions to error classification and error analysis. Featuring 90 worked examples—many of them drawn from actual implementations—and more than 130 skill-building chapter-end problems, Analog Signal Processing is both a valuable working resource for practicing design engineers and a textbook for advanced courses in electronic instrumentation design.
Despite our growing understanding of the properties and capabilities of nonlinear filters, there persists the belief among engineers that these filters are too complex to implement. This book debunks the myth that all nonlinear filters are complex with its coverage of the polynomial filter. It examines all major aspects of the technology, including system modeling, speed analysis, image processing, communications, biological signal processing, semiconductor modeling, neutral sets, and more.
The book discusses subjective ratings of quality and preference of unknown voices and dialog partners - their likability, for example. Human natural and artificial voices are studied in passive listening and interactive scenarios. In this book, the background, state of research, and contributions to the assessment and prediction of talker quality that is constituted in voice perception and in dialog are presented. Starting from theories and empirical findings from human interaction, major results and approaches are transferred to the domain of human-computer interaction (HCI). The main objective of this book is to contribute to the evaluation of spoken interaction in humans and between humans and computers, and in particular to the quality subsequently attributed to the speaking system or person based on the listening and interactive experience. Provides a comprehensive overview of research in evaluation of speakers and dialog partners; Presents recent results on the relevance of a first passive and interactive impression; Includes human and HCI evaluation results from a communicative perspective.
This book introduces readers to all the necessary components and knowledge to start being a vital part of the IoT revolution. The author discusses how to create smart-IoT solutions to help solve a variety of real problems. Coverage includes the most important aspects of IoT architecture, the various applications of IoT, and the enabling technologies for IoT. This book presents key IoT concepts and abstractions, while showcasing real case studies. The discussion also includes an analysis of IoT strengths, weaknesses, opportunities and threats. Readers will benefit from the in-depth introduction to internet of things concepts, along with discussion of IoT algorithms and architectures tradeoffs. Case studies include smart homes, smart agriculture, and smart automotive.
This book enables readers to achieve ultra-low energy digital system performance. The author's main focus is the energy consumption of microcontroller architectures in digital (sub)-systems. The book covers a broad range of topics extensively: from circuits through design strategy to system architectures. The result is a set of techniques and a context to realize minimum energy digital systems. Several prototype silicon implementations are discussed, which put the proposed techniques to the test. The achieved results demonstrate an extraordinary combination of variation-resilience, high speed performance and ultra-low energy.
This book presents the state-of-the-art and breakthrough innovations in design automation for cyber-physical systems.The authors discuss various aspects of cyber-physical systems design, including modeling, co-design, optimization, tools, formal methods, validation, verification, and case studies. Coverage includes a survey of the various existing cyber-physical systems functional design methodologies and related tools will provide the reader unique insights into the conceptual design of cyber-physical systems.
Discover a fresh approach for designing more efficient and cooperative wireless communications networks with this systematic guide. Covering everything from fundamental theory to current research topics, leading researchers describe a new, network-aware coding strategy that exploits the signal interactions that occur in dense wireless networks directly at the waveform level. Using an easy-to-follow, layered structure, this unique text begins with a gentle introduction for those new to the subject, before moving on to explain key information-theoretic principles and establish a consistent framework for wireless physical layer network coding (WPNC) strategies. It provides a detailed treatment of Network Coded Modulation, covers a range of WPNC techniques such as Noisy Network Coding, Compute and Forward, and Hierarchical Decode and Forward, and explains how WPNC can be applied to parametric fading channels, frequency selective channels, and complex stochastic networks. This is essential reading whether you are a researcher, graduate student, or professional engineer.
With the constant increase in applications involving image
processing and multimedia procedures digital signal processing
(DSP) is important for modern information engineering. One- and
Multidimensional Signal Processing provides an introduction to the
algorithmic basics of image and TV communication systems as well as
for systems in automation and robotic applications using sensor
based imaging techniques. This novel combination of both one- and
multidimensional signal processing discusses the similarities
between the two and aids the understanding of one theory over the
other.
Biomedical / Electrical Engineering Nonlinear Biomedical Signal
Processing Volume II: Dynamic Analysis and Modeling A volume in the
IEEE Press Series on Biomedical Engineering Metin Akay, Series
Editor Featuring current contributions by experts in signal
processing and biomedical engineering, this book introduces the
concepts, recent advances, and implementations of nonlinear dynamic
analysis methods. Together with Volume I in this series, this book
provides comprehensive coverage of nonlinear signal and image
processing techniques. Nonlinear Biomedical Signal Processing:
Volume II combines analytical and biological expertise in the
original mathematical simulation and modeling of physiological
systems. Detailed discussions of the analysis of steady-state and
dynamic systems, discrete-time system theory, and discrete modeling
of continuous-time systems are provided. Biomedical examples
include the analysis of the respiratory control system, the
dynamics of cardiac muscle and the cardiorespiratory function, and
neural firing patterns in auditory and vision systems. Examples
include relevant MATLAB(r) and Pascal programs. Topics covered
include:
Master the usage of s-parameters in signal integrity applications and gain full understanding of your simulation and measurement environment with this rigorous and practical guide. Solve specific signal integrity problems including calculation of the s-parameters of a network, linear simulation of circuits, de-embedding, and virtual probing, all with expert guidance. Learn about the interconnectedness of s-parameters, frequency responses, filters, and waveforms. This invaluable resource for signal integrity engineers is supplemented with the open-source software SignalIntegrity, a Python package for scripting solutions to signal integrity problems.
This book explains speech enhancement in the Fractional Fourier Transform (FRFT) domain and investigates the use of different FRFT algorithms in both single channel and multi-channel enhancement systems, which has proven to be an ideal time frequency analysis tool in many speech signal processing applications. The authors discuss the complexities involved in the highly non- stationary signal processing and the concepts of FRFT for speech enhancement applications. The book explains the fundamentals of FRFT as well as its implementation in speech enhancement. Theories of different FRFT methods are also discussed. The book lets readers understand the new fractional domains to prepare them to develop new algorithms. A comprehensive literature survey regarding the topic is also made available to the reader.
Digital audio, speech recognition, cable modems, radar, high-definition television—these are but a few of the modern computer and communications applications relying on digital signal processing (DSP) and the attendant application-specific integrated circuits (ASICs). As information-age industries constantly reinvent ASIC chips for lower power consumption and higher efficiency, there is a growing need for designers who are current and fluent in VLSI design methodologies for DSP. Enter VLSI Digital Signal Processing Systems—a unique, comprehensive guide to performance optimization techniques in VLSI signal processing. Based on Keshab Parhi's highly respected and popular graduate-level courses, this volume is destined to become the standard text and reference in the field. This text integrates VLSI architecture theory and algorithms, addresses various architectures at the implementation level, and presents several approaches to analysis, estimation, and reduction of power consumption. Throughout this book, Dr. Parhi explains how to design high-speed, low-area, and low-power VLSI systems for a broad range of DSP applications. He covers pipelining extensively as well as numerous other techniques, from parallel processing to scaling and roundoff noise computation. Readers are shown how to apply all techniques to improve implementations of several DSP algorithms, using both ASICs and off-the-shelf programmable digital signal processors. The book features hundreds of graphs illustrating the various DSP algorithms, examples based on digital filters and transforms clarifying key concepts, and interesting end-of-chapter exercises that help match techniques with applications. In addition, the abundance of readily available techniques makes this an extremely useful resource for designers of DSP systems in wired, wireless, or multimedia communications. The material can be easily adopted in new courses on either VLSI digital signal processing architectures or high-performance VLSI system design. An invaluable reference and practical guide to VLSI digital signal processing. A tremendous source of optimization techniques indispensable in modern VLSI signal processing, VLSI Digital Signal Processing Systems promises to become the standard in the field. It offers a rich training ground for students of VLSI design for digital signal processing and provides immediate access to state-of-the-art, proven techniques for designers of DSP applications—in wired, wireless, or multimedia communications. Topics include:
Signal Analysis explores methods that offer an insight into the properties of signals and stochastic processes. This comprehensive and authoritative book provides an introduction to the fundamental theory of signal analysis. It bridges the gap between the basic knowledge in system theory and the specialist knowledge in various fields of signal processing and provides a complete overview of current applications. Features include:
"In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, ""father of the MRI,"" and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: * Mathematical fundamentals Signal generation and detection principles* Signal characteristics* Signal localization principles* Image reconstruction techniques* Image contrast mechanisms Image resolution, noise, and artifacts* Fast-scan imaging* Constrained reconstruction. Complete with a comprehensive set of examples and homework problems, PRINCIPLES OF MAGNETIC RESONANCE IMAGING is the must-read book to improve your knowledge of this revolutionary technique. For more information on the IEEE Press Series in Biomedical Engineering edited by Metin Akay, go to http://www caip.rutgers.edu/ per cent7Eakay/book/ Professors: To request an examination copy simply e-mail [email protected]." Sponsored by: IEEE Engineering in Medicine and Biology Society.
Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classifying signals, including entropy-based methods and scaling methods. A full set of PowerPoint slides covering the material in each chapter and problem solutions is available to instructors for download. See What's New in the Third Edition: Two new chapters on nonlinear methods for describing and classifying signals. Additional examples with biological data such as EEG, ECG, respiration and heart rate variability Nearly double the number of end-of-chapter problems MATLAB (R) incorporated throughout the text Data "cleaning" methods commonly used in such areas as heart rate variability studies The text provides a general understanding of image processing sufficient to allow intelligent application of the concepts, including a description of the underlying mathematical principals when needed. Throughout this textbook, signal and image processing concepts are implemented using the MATLAB (R) software package and several of its toolboxes. The challenge of covering a broad range of topics at a useful, working depth is motivated by current trends in biomedical engineering education, particularly at the graduate level where a comprehensive education must be attained with a minimum number of courses. This has led to the development of "core" courses to be taken by all students. This text was written for just such a core course. It is also suitable for an upper-level undergraduate course and would also be of value for students in other disciplines that would benefit from a working knowledge of signal and image processing.
This book describes a new way to design and utilize Instrumentation Amplifiers (IAs) by taking advantages of the current-mode (CM) approach. For the first time, all different topologies of CMIAs are discussed and compared, providing a single-source reference for instrumentation and measurement experts who want to choose a topology for a specific application. The authors also explain major challenges in designing CMIAs, so the book can be useful for anyone studying instrumentation amplifiers, and even other analog circuits. Coverage also includes various CM signal processing techniques employed in CMIAs, and applications of the CMIAs in biomedical and data acquisition are demonstrated.
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.
Advanced microsensor technology is making a significant impact in fields as diverse as wireless communications and automotive, biomedical and chemical engineering. Data Acquisition and Signal Processing for Smart Sensors draws on the authors' collective practical experience in the design of sensor instrumentation to provide a systematic treatment of smart sensors and sensor systems. This unique reference presents an alternative to the classical approach to data acquisition and covers signal processing methods for digital and quasi-digital sensors. Features Include:
This book addresses the automatic sizing and layout of analog integrated circuits (ICs) using deep learning (DL) and artificial neural networks (ANN). It explores an innovative approach to automatic circuit sizing where ANNs learn patterns from previously optimized design solutions. In opposition to classical optimization-based sizing strategies, where computational intelligence techniques are used to iterate over the map from devices' sizes to circuits' performances provided by design equations or circuit simulations, ANNs are shown to be capable of solving analog IC sizing as a direct map from specifications to the devices' sizes. Two separate ANN architectures are proposed: a Regression-only model and a Classification and Regression model. The goal of the Regression-only model is to learn design patterns from the studied circuits, using circuit's performances as input features and devices' sizes as target outputs. This model can size a circuit given its specifications for a single topology. The Classification and Regression model has the same capabilities of the previous model, but it can also select the most appropriate circuit topology and its respective sizing given the target specification. The proposed methodology was implemented and tested on two analog circuit topologies.
Advances in Imaging and Electron Physics, Volume 213, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Understanding acoustics - the science of sound -- is essential for audio and communications engineers working in media technology. It is also extremely important for engineers to understand what allows a sound to be heard in the way it is, what makes speech intelligible, and how a particular sound is recognized within a multitude of sounds. Acoustic Signals and Hearing: A Time-Envelope and Phase Spectral Approach is unique in presenting the principles of sound and sound fields from the perspective of hearing, particularly through the use of speech and musical sounds. Acoustic Signals and Hearing: A Time-Envelope and Phase Spectral Approach is an ideal resource for researchers and acoustic engineers working in today's environment of media technology, and graduate students studying acoustics, audio engineering, and signal processing.
"IEEE Press is proud to present the first selected reprint volume
devoted to the new field of intelligent signal processing (ISP).
ISP differs fundamentally from the classical approach to
statistical signal processing in that the input-output behavior of
a complex system is modeled by using "intelligent" or "model-free"
techniques, rather than relying on the shortcomings of a
mathematical model. Information is extracted from incoming signal
and noise data, making few assumptions about the statistical
structure of signals and their environment. |
You may like...
Advances in Communication Systems and…
J. Jayakumari, George K. Karagiannidis, …
Hardcover
R5,628
Discovery Miles 56 280
The Handbook of Multimodal-Multisensor…
Sharon Oviatt, Bjoern Schuller, …
Hardcover
R3,063
Discovery Miles 30 630
Wireless Sensor Networks - Energy…
Hossam Mahmoud Ahmad Fahmy
Hardcover
R4,615
Discovery Miles 46 150
Advanced Signal Processing for Industry…
Irshad Ahmad Ansari, Varun Bajaj
Hardcover
R3,230
Discovery Miles 32 300
Applications of Hybrid Metaheuristic…
Diego Oliva, Salvador Hinojosa
Hardcover
R4,292
Discovery Miles 42 920
Data-Driven Science and Engineering…
Steven L. Brunton, J. Nathan Kutz
Hardcover
|