![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Signal processing
In Object Recognition through Invariant Indexing, Charles Rothwell provides a practical and accessible introduction to two-dimensional shape description using projective invariants while contrasting the various interpretations of the descriptors currently in use. He also surveys a number of new invariant descriptors for three-dimensional shapes that can be recovered from single images, showing how such measures can be used to ease the recognition of real objects by a computer. Rothwell then proceeds to describe a promising new architecture for a real recognition system. In reviewing a broad field of recognition theory, the book is unique in its deft synthesis of research and application. It will be welcomed by students and researchers in computer vision, robotics, pattern recognition, and image and signal processing.
A concise introduction to the design and analysis of digital signal processors. Unique in its presentation of advanced topics at the undergraduate level. Contains excellent graphics and includes coverage of the A/D-digital filter and D/A structures of digital systems. Each chapter includes many carefully worked-out examples and concludes with a summary and problems.
The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.
For advanced students of network data science, this compact account covers both well-established methodology and the theory of models recently introduced in the graphical model literature. It focuses on the discrete case where all variables involved are categorical and, in this context, it achieves a unified presentation of classical and recent results.
This snapshot of the current frontier of statistics and network analysis focuses on the foundational topics of modeling, sampling, and design. Primarily for graduate students and researchers in statistics and closely related fields, emphasis is not only on what has been done, but on what remains to be done.
This graduate textbook presents fundamentals, applications and evaluation of image segregation, unit description, feature measurement and pattern recognition. Analysis on textile, shape and motion are discussed and mathematical tools are employed extensively. Rich in examples and excises, it prepares electrical engineering and computer science students with knowledge and skills for further studies on image understanding.
Intelligent Computing for Interactive System Design provides a comprehensive resource on what has become the dominant paradigm in designing novel interaction methods, involving gestures, speech, text, touch and brain-controlled interaction, embedded in innovative and emerging human-computer interfaces. These interfaces support ubiquitous interaction with applications and services running on smartphones, wearables, in-vehicle systems, virtual and augmented reality, robotic systems, the Internet of Things (IoT), and many other domains that are now highly competitive, both in commercial and in research contexts. This book presents the crucial theoretical foundations needed by any student, researcher, or practitioner working on novel interface design, with chapters on statistical methods, digital signal processing (DSP), and machine learning (ML). These foundations are followed by chapters that discuss case studies on smart cities, brain-computer interfaces, probabilistic mobile text entry, secure gestures, personal context from mobile phones, adaptive touch interfaces, and automotive user interfaces. The case studies chapters also highlight an in-depth look at the practical application of DSP and ML methods used for processing of touch, gesture, biometric, or embedded sensor inputs. A common theme throughout the case studies is ubiquitous support for humans in their daily professional or personal activities. In addition, the book provides walk-through examples of different DSP and ML techniques and their use in interactive systems. Common terms are defined, and information on practical resources is provided (e.g., software tools, data resources) for hands-on project work to develop and evaluate multimodal and multi-sensor systems. In a series of in-chapter commentary boxes, an expert on the legal and ethical issues explores the emergent deep concerns of the professional community, on how DSP and ML should be adopted and used in socially appropriate ways, to most effectively advance human performance during ubiquitous interaction with omnipresent computers. This carefully edited collection is written by international experts and pioneers in the fields of DSP and ML. It provides a textbook for students and a reference and technology roadmap for developers and professionals working on interaction design on emerging platforms.
Social Signal Processing is the first book to cover all aspects of the modeling, automated detection, analysis, and synthesis of nonverbal behavior in human-human and human-machine interactions. Authoritative surveys address conceptual foundations, machine analysis and synthesis of social signal processing, and applications. Foundational topics include affect perception and interpersonal coordination in communication; later chapters cover technologies for automatic detection and understanding such as computational paralinguistics and facial expression analysis and for the generation of artificial social signals such as social robots and artificial agents. The final section covers a broad spectrum of applications based on social signal processing in healthcare, deception detection, and digital cities, including detection of developmental diseases and analysis of small groups. Each chapter offers a basic introduction to its topic, accessible to students and other newcomers, and then outlines challenges and future perspectives for the benefit of experienced researchers and practitioners in the field.
Gain a detailed understanding of the protocols, network architectures and techniques being considered for 5G wireless networks with this authoritative guide to the state of the art. * Get up to speed with key topics such as cloud radio access networks, mobile edge computing, full duplexing, massive MIMO, mmWave, NOMA, Internet of things, M2M communications, D2D communications, mobile data offloading, interference mitigation techniques, radio resource management, visible light communications, and smart data pricing. * Learn from leading researchers in academia and industry about the most recent theoretical developments in the field. * Discover how each potential technology can increase the capacity, spectral efficiency, and energy efficiency of wireless systems. Providing the most comprehensive overview of 5G technologies to date, this is an essential reference for researchers, practicing engineers and graduate students working in wireless communications and networking.
To meet the increasing demand of electrical power, the use of renewable energy-based smart grid is attracting significant attention in recent years throughout the world. The high penetration of renewable power in the smart grids is growing its importance due to its non-finishing, reusable, reliable, sustainable, lower cost, and available characteristics. The renewable energy-based smart grid technology may mitigate the increasing energy demands effectively and efficiently without hampering the environment. But the uncertain nature of renewable sources largely affects the operation of the smart grid by un-stabling the voltage and frequency that may introduces power quality and reliability problems, which requires special control techniques. This book investigates the challenges in controlling renewable energy-based smart grids and proposes different control techniques to control the voltage and frequency effectively to improve the power quality and reliability of the power grids. This book is a valuable resource for readers interested in practical solutions in smart grids and renewable energy systems.
Written by pioneers of the concept, this is the first complete guide to the physical and engineering principles of Massive MIMO. Assuming only a basic background in communications and statistical signal processing, it will guide readers through key topics in multi-cell systems such as propagation modeling, multiplexing and de-multiplexing, channel estimation, power control, and performance evaluation. The authors' unique capacity-bounding approach will enable readers to carry out effective system performance analyses and develop advanced Massive MIMO techniques and algorithms. Numerous case studies, as well as problem sets and solutions accompanying the book online, will help readers put knowledge into practice and acquire the skill set needed to design and analyze complex wireless communication systems. Whether you are a graduate student, researcher, or industry professional working in the field of wireless communications, this will be an indispensable guide for years to come.
These volumes constitute the Proceedings of the 6th International Workshop on Soft Computing Applications, or SOFA 2014, held on 24-26 July 2014 in Timisoara, Romania. This edition was organized by the University of Belgrade, Serbia in conjunction with Romanian Society of Control Engineering and Technical Informatics (SRAIT) - Arad Section, The General Association of Engineers in Romania - Arad Section, Institute of Computer Science, Iasi Branch of the Romanian Academy and IEEE Romanian Section. The Soft Computing concept was introduced by Lotfi Zadeh in 1991 and serves to highlight the emergence of computing methodologies in which the accent is on exploiting the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solution cost. Soft computing facilitates the use of fuzzy logic, neurocomputing, evolutionary computing and probabilistic computing in combination, leading to the concept of hybrid intelligent systems. The combination of such intelligent systems tools and a large number of applications introduce a need for a synergy of scientific and technological disciplines in order to show the great potential of Soft Computing in all domains. The conference papers included in these proceedings, published post conference, were grouped into the following area of research: * Image, Text and Signal Processing Intelligent Transportation Modeling and Applications Biomedical Applications Neural Network and ApplicationsKnowledge-Based Technologies for Web Applications, Cloud Computing, Security, Algorithms and Computer Networks Knowledge-Based Technologies Soft Computing Techniques for Time Series Analysis Soft Computing and Fuzzy Logic in Biometrics Fuzzy Applications Theory and Fuzzy Control Business Process Management Methods and Applications in Electrical Engineering The volumes provide useful information to professors, researchers and graduated students in area of soft computing techniques and applications, as they report new research work on challenging issues.
This updated edition gives readers hands-on experience in real-time DSP using a practical, step-by-step framework that also incorporates demonstrations, exercises, and problems, coupled with brief overviews of applicable theory and MATLAB applications. Organized in three sections that cover enduring fundamentals and present practical projects and invaluable appendices, this new edition provides support for the most recent and powerful of the inexpensive DSP development boards currently available from Texas Instruments: the OMAP-L138 LCDK. It includes two new real-time DSP projects, as well as three new appendices: an introduction to the Code Generation tools available with MATLAB, a guide on how to turn the LCDK into a portable battery-operated device, and a comparison of the three DSP boards directly supported by this edition.
These volumes constitute the Proceedings of the 6th International Workshop on Soft Computing Applications, or SOFA 2014, held on 24-26 July 2014 in Timisoara, Romania. This edition was organized by the University of Belgrade, Serbia in conjunction with Romanian Society of Control Engineering and Technical Informatics (SRAIT) - Arad Section, The General Association of Engineers in Romania - Arad Section, Institute of Computer Science, Iasi Branch of the Romanian Academy and IEEE Romanian Section. The Soft Computing concept was introduced by Lotfi Zadeh in 1991 and serves to highlight the emergence of computing methodologies in which the accent is on exploiting the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solution cost. Soft computing facilitates the use of fuzzy logic, neurocomputing, evolutionary computing and probabilistic computing in combination, leading to the concept of hybrid intelligent systems. The combination of such intelligent systems tools and a large number of applications introduce a need for a synergy of scientific and technological disciplines in order to show the great potential of Soft Computing in all domains. The conference papers included in these proceedings, published post conference, were grouped into the following area of research: * Image, Text and Signal Processing "li>Intelligent Transportation* Modeling and Applications* Biomedical Applications* Neural Network and Applications* Knowledge-Based Technologies for Web Applications, Cloud Computing, Security, Algorithms and Computer Networks * Knowledge-Based Technologies* Soft Computing Techniques for Time Series Analysis* Soft Computing and Fuzzy Logic in Biometrics* Fuzzy Applications Theory and Fuzzy Control* Bussiness Process Management* Methods and Applications in Electrical Engineering The volumes provide useful information to professors, researchers and graduated students in area of soft computing techniques and applications, as they report new research work on challenging issues.
This book constitutes the refereed proceedings of the 7th International Conference, ICISP 2016, held in May/June 2016 in Trois-Rivieres, QC, Canada. The 40 revised full papers were carefully reviewed and selected from 83 submissions. The contributions are organized in topical sections on features extraction, computer vision, and pattern recognition; multispectral and color imaging; image filtering, segmentation, and super-resolution; signal processing; biomedical imaging; geoscience and remote sensing; watermarking, authentication and coding; and 3d acquisition, processing, and applications.
This book constitutes the proceedings of the 7th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2015, held in Santiage de Compostela, Spain, in June 2015. The 83 papers presented in this volume were carefully reviewed and selected from 141 submissions. They were organized in topical sections named: Pattern Recognition and Machine Learning; Computer Vision; Image and Signal Processing; Applications; Medical Image; Pattern Recognition and Machine Learning; Computer Vision; Image and Signal Processing; and Applications
This thoroughly updated new edition presents state-of-the-art sparse and multiscale image and signal processing. It covers linear multiscale geometric transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Along with an up-to-the-minute description of required computation, it covers the latest results in inverse problem solving and regularization, sparse signal decomposition, blind source separation, in-painting, and compressed sensing. New chapters and sections cover multiscale geometric transforms for three-dimensional data (data cubes), data on the sphere (geo-located data), dictionary learning, and nonnegative matrix factorization. The authors wed theory and practice in examining applications in areas such as astronomy, including recent results from the European Space Agency's Herschel mission, biology, fusion physics, cold dark matter simulation, medical MRI, digital media, and forensics. MATLAB (R) and IDL code, available online at www.SparseSignalRecipes.info, accompany these methods and all applications.
Balancing theoretical analysis and practical advice, this book describes all the underlying principles required to build high performance indoor optical wireless communication (OWC) systems based on visible and infrared light, alongside essential techniques for optimising systems by maximising throughput, reducing hardware complexity and measuring performance effectively. It provides a comprehensive analysis of information rate-, spectral- and power-efficiencies for single and multi-carrier transmission schemes, and a novel analysis of non-linear signal distortion, enabling the use of off-the-shelf LED technology. Other topics covered include cellular network throughput and coverage, static resource partitioning and dynamic interference-aware scheduling, realistic light propagation modelling, OFDM, optical MIMO transmission and nonlinearity modelling. Covering practical techniques for building indoor optical wireless cellular networks supporting multiple users and guidelines for 5G cellular system studies, in addition to physical layer issues, this is an indispensable resource for academic researchers, professional engineers and graduate students working in optical communications.
Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging - including compressed sensing, wavelets and optimization - in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.
This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics.
This lively and accessible book describes the theory and applications of Hilbert spaces and also presents the history of the subject to reveal the ideas behind theorems and the human struggle that led to them. The authors begin by establishing the concept of 'countably infinite', which is central to the proper understanding of separable Hilbert spaces. Fundamental ideas such as convergence, completeness and dense sets are first demonstrated through simple familiar examples and then formalised. Having addressed fundamental topics in Hilbert spaces, the authors then go on to cover the theory of bounded, compact and integral operators at an advanced but accessible level. Finally, the theory is put into action, considering signal processing on the unit sphere, as well as reproducing kernel Hilbert spaces. The text is interspersed with historical comments about central figures in the development of the theory, which helps bring the subject to life.
Adaptive signal processing (ASP) and iterative signal processing (ISP) are important techniques in improving receiver performance in communication systems. Using examples from practical transceiver designs, this 2006 book describes the fundamental theory and practical aspects of both methods, providing a link between the two where possible. The first two parts of the book deal with ASP and ISP respectively, each in the context of receiver design over intersymbol interference (ISI) channels. In the third part, the applications of ASP and ISP to receiver design in other interference-limited channels, including CDMA and MIMO, are considered; the author attempts to illustrate how the two techniques can be used to solve problems in channels that have inherent uncertainty. Containing illustrations and worked examples, this book is suitable for graduate students and researchers in electrical engineering, as well as practitioners in the telecommunications industry.
The principles of signal processing are fundamental to the operation of many everyday devices. This book introduces the basic theory of digital signal processing, with emphasis on real-world applications. Sampling, quantization, the Fourier transform, filters, Bayesian methods and numerical considerations are covered, then developed to illustrate how they are used in audio, image, and video processing and compression, and in communications. The book concludes with methods for the efficient implementation of algorithms in hardware and software. Intuitive arguments rather than mathematical ones are used wherever possible, and links between various signal processing techniques are stressed. The advantages and disadvantages of different approaches are presented in the context of real-world examples, enabling the reader to choose the best solution to a given problem. With over 200 illustrations and over 130 exercises (including solutions), this book will appeal to practitioners working in signal processing, and undergraduate students of electrical and computer engineering.
Stochastic resonance has been observed in many forms of systems, and has been hotly debated by scientists for over 30 years. Applications incorporating aspects of stochastic resonance may yet prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. Ideal for researchers in fields ranging from computational neuroscience through to electronic engineering, this book addresses in detail various theoretical aspects of stochastic quantization, in the context of the suprathreshold stochastic resonance effect. Initial chapters review stochastic resonance and outline some of the controversies and debates that have surrounded it. The book then discusses suprathreshold stochastic resonance, and its extension to more general models of stochastic signal quantization. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers, before culminating with a chapter in the application of suprathreshold stochastic resonance to the design of cochlear implants.
Peak signal power is an important factor in the implementation of multicarrier (MC) modulation schemes, like OFDM, in wireless and wireline communication systems. This 2007 book describes tools necessary for analyzing and controlling the peak-to-average power ratio in MC systems, and how these techniques are applied in practical designs. The author starts with an overview of multicarrier signals and basic tools and algorithms, before discussing properties of MC signals in detail: discrete and continuous maxima; statistical distribution of peak power; codes with constant peak-to-average power ratio are all covered, concluding with methods to decrease peak power in MC systems. Current knowledge, problems, methods and definitions are summarized using rigorous mathematics, with an overview of the tools for the engineer. The book is aimed at graduate students and researchers in electrical engineering, computer science and applied mathematics, and practitioners in the telecommunications industry. |
![]() ![]() You may like...
Advances in Imaging and Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
Data Fusion in Wireless Sensor Networks…
Domenico Ciuonzo, Pierluigi Salvo Rossi
Hardcover
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,558
Discovery Miles 35 580
Advances in Imaging and Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
|