![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Signal processing
Advances in Imaging and Electron Physics, Volume 219, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource.
Optical Communications in the 5G Era provides an up-to-date overview of the emerging optical communication technologies for 5G next-generation wireless networks. It outlines the emerging applications of optical networks in future wireless networks, state-of-the-art optical communication technologies, and explores new R&D opportunities in the field of converged fixed-mobile networks. Optical Communications in the 5G Era is an ideal reference for university researchers, graduate students, and industry R&D engineers in optical communications, photonics, and mobile and wireless communications who need a broad and deep understanding of modern optical communication technologies, systems, and networks that are fundamental to 5G and beyond.
Intelligent Image and Video Compression: Communicating Pictures, Second Edition explains the requirements, analysis, design and application of a modern video coding system. It draws on the authors' extensive academic and professional experience in this field to deliver a text that is algorithmically rigorous yet accessible, relevant to modern standards and practical. It builds on a thorough grounding in mathematical foundations and visual perception to demonstrate how modern image and video compression methods can be designed to meet the rate-quality performance levels demanded by today's applications and users, in the context of prevailing network constraints. "David Bull and Fan Zhang have written a timely and accessible book on the topic of image and video compression. Compression of visual signals is one of the great technological achievements of modern times, and has made possible the great successes of streaming and social media and digital cinema. Their book, Intelligent Image and Video Compression covers all the salient topics ranging over visual perception, information theory, bandpass transform theory, motion estimation and prediction, lossy and lossless compression, and of course the compression standards from MPEG (ranging from H.261 through the most modern H.266, or VVC) and the open standards VP9 and AV-1. The book is replete with clear explanations and figures, including color where appropriate, making it quite accessible and valuable to the advanced student as well as the expert practitioner. The book offers an excellent glossary and as a bonus, a set of tutorial problems. Highly recommended!" --Al Bovik
Advances in Imaging and Electron Physics, Volume 218 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more.
Quantitative Atomic-Resolution Electron Microscopy, Volume 217, the latest release in the Advances in Imaging and Electron Physics series merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods. Chapters in this release include Statistical parameter estimation theory, Efficient fitting algorithm, Statistics-based atom counting , Atom column detection, Optimal experiment design for nanoparticle atom-counting from ADF STEM images, and more.
Advances in Imaging and Electron Physics, Volume 216, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 215, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Many processes in nature arise from the interaction of periodic phenomena with random phenomena. The results are processes that are not periodic, but whose statistical functions are periodic functions of time. These processes are called cyclostationary and are an appropriate mathematical model for signals encountered in many fields including communications, radar, sonar, telemetry, acoustics, mechanics, econometrics, astronomy, and biology. Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations addresses these issues and includes the following key features.
Advances in Imaging and Electron Physics, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
Advances in Imaging and Electron Physics, Volume 212, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 211, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more.
Acoustics: Sound Fields, Transducers and Vibration, Second Edition guides readers through the basics of sound fields, the laws governing sound generation, radiation, and propagation, and general terminology. Specific sections cover microphones (electromagnetic, electrostatic, and ribbon), earphones, and horns, loudspeaker enclosures, baffles and transmission lines, miniature applications (e.g. MEMS microphones and micro speakers in tablets and smart phones), sound in enclosures of all sizes, such as school rooms, offices, auditoriums and living rooms, and fluid-structure interaction. Numerical examples and summary charts are given throughout the text to make the material easily applicable to practical design. New to this edition: A chapter on electrostatic loudspeakers A chapter on vibrating surfaces (membranes, plates, and shells) Readers will find this to be a valuable resource for experimenters, acoustical consultants, and to those who anticipate being engineering designers of audio equipment. It will serve as both a text for students in engineering departments and as a valuable reference for practicing engineers.
Developments and Applications for ECG Signal Processing: Modeling, Segmentation, and Pattern Recognition covers reliable techniques for ECG signal processing and their potential to significantly increase the applicability of ECG use in diagnosis. This book details a wide range of challenges in the processes of acquisition, preprocessing, segmentation, mathematical modelling and pattern recognition in ECG signals, presenting practical and robust solutions based on digital signal processing techniques. Users will find this to be a comprehensive resource that contributes to research on the automatic analysis of ECG signals and extends resources relating to rapid and accurate diagnoses, particularly for long-term signals. Chapters cover classical and modern features surrounding f ECG signals, ECG signal acquisition systems, techniques for noise suppression for ECG signal processing, a delineation of the QRS complex, mathematical modelling of T- and P-waves, and the automatic classification of heartbeats.
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.
Acoustic Emission Signal Analysis and Damage Mode Identification of Composite Wind Turbine Blades covers both the underlying theory and various techniques for effective structural monitoring of composite wind turbine blades via acoustic emission signal analysis, helping readers solve critical problems such as noise elimination, defect detection, damage mode identification, and more. Author Pengfei Liu introduces techniques for identifying and analyzing progressive failure under tension, delamination, damage localization, adhesive composite joint failure, and other degradation phenomena, outlining methods such as time-difference, wavelet, machine learning, and more including combined methods. The disadvantages and advantages of using each method are covered as are techniques for different blade-lengths and various blade substructures. Piezoelectric sensors are discussed as is experimental analysis of damage source localization. The book also takes great lengths to let readers know when techniques and concepts discussed can be applied to composite materials and structures beyond just wind turbine blades.
The role of data fusion has been expanding in recent years through the incorporation of pervasive applications, where the physical infrastructure is coupled with information and communication technologies, such as wireless sensor networks for the internet of things (IoT), e-health and Industry 4.0. In this edited reference, the authors provide advanced tools for the design, analysis and implementation of inference algorithms in wireless sensor networks. The book is directed at the sensing, signal processing, and ICTs research communities. The contents will be of particular use to researchers (from academia and industry) and practitioners working in wireless sensor networks, IoT, E-health and Industry 4.0 applications who wish to understand the basics of inference problems. It will also be of interest to professionals, and graduate and PhD students who wish to understand the fundamental concepts of inference algorithms based on intelligent and energy-efficient protocols.
Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting presents imaging, treatment, and computed assisted technological techniques for diagnostic and intraoperative vascular imaging and stenting. These techniques offer increasingly useful information on vascular anatomy and function, and are poised to have a dramatic impact on the diagnosis, analysis, modeling, and treatment of vascular diseases. After setting out the technical and clinical challenges of vascular imaging and stenting, the book gives a concise overview of the basics before presenting state-of-the-art methods for solving these challenges. Readers will learn about the main challenges in endovascular procedures, along with new applications of intravascular imaging and the latest advances in computer assisted stenting.
Medical imaging is one of the heaviest funded biomedical engineering research areas. The second edition of Pattern Recognition and Signal Analysis in Medical Imaging brings sharp focus to the development of integrated systems for use in the clinical sector, enabling both imaging and the automatic assessment of the resultant data. Since the first edition, there has been tremendous development of new, powerful technologies for detecting, storing, transmitting, analyzing, and displaying medical images. Computer-aided analytical techniques, coupled with a continuing need to derive more information from medical images, has led to a growing application of digital processing techniques in cancer detection as well as elsewhere in medicine. This book is an essential tool for students and professionals, compiling and explaining proven and cutting-edge methods in pattern recognition for medical imaging.
The first book to combine satellite and terrestrial positioning techniques - vital for the understanding and development of new technologies Written and edited by leading experts in the field, with contributors belonging to the European Commission's FP7 Network of Excellence NEWCOM++ Applications to a wide range of fields, including sensor networks, emergency services, military use, location-based billing, location-based advertising, intelligent transportation, and leisure Location-aware personal devices and location-based services have become ever more prominent in the past few years, thanks to the significant advances in position location technology. Sensor networks, geographic information, emergency services, location management, location-based billing, location-based advertising, intelligent transportation, and leisure applications are just some of the potential applications that can be enabled by these techniques. Increasingly, satellite and terrestrial positioning techniques are being combined for maximum performance; to produce the next wave of location-based devices and services, engineers need to combine both components. This book is the first to present a holistic view, covering all aspects of positioning: both terrestrial and satellite, both theory and practice, both performance bounds and signal processing techniques. It will provide a valuable resource for product developers and R&D engineers, allowing them to improve existing location techniques and develop future approaches for new systems. |
You may like...
Wireless Communication Networks…
Hailong Huang, Andrey V. Savkin, …
Paperback
R2,763
Discovery Miles 27 630
Advances in Imaging and Electron…
Peter W. Hawkes, Martin Hytch
Hardcover
R5,218
Discovery Miles 52 180
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
|