![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Solar system
Magnetic energy release plays an important role in a wide variety of cosmic objects such as the Sun, stellar coronae, stellar and galactic accretion disks and pulsars. The observed radio, X-ray and gamma-ray emission often directly results from magnetic flares', implying that these processes are spatially fragmented and of an impulsive nature. A true understanding of these processes requires a combined magnetohydrodynamical and plasma physical approach. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics provides a comprehensive, interdisciplinary summary of magnetic energy release in the Sun and stars, in accretion disks, in pulsar magnetospheres and in laboratory plasmas. These proceedings include papers on both theoretical and observational aspects. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics is for researchers in the fields of solar physics, stellar astrophysics and (laboratory) plasma physics and is a useful resource book for graduate level astrophysics courses.
How did life originate on Earth? For over 50 years, scientists believed that life was the result of a chemical reaction involving simple molecules such as methane and ammonia cooking in a primordial soup. Recent space observations have revealed that old stars are capable of making very complex organic compounds. At some point in their evolution, stars eject those organics and spread them all over the Milky Way galaxy. There is evidence that these organic dust particles actually reached the early Solar System. Through bombardments by comets and asteroids, the young Earth inherited significant amounts of stardust. Was the development of life assisted by the arrival of these extraterrestrial materials? In this book, the author describes stunning discoveries in astronomy and solar system science made over the last 10 years that have yielded a new perspective on the origin of life. Other interesting topics discussed in this book The discovery of diamonds and other gemstones in space The origin of oil Neon signs and fluorescent lights in space Smoke from the stars Stardust in our hands Where oceans come from The possibility of bacteria in space
As I write this short preface, the red orb of Mars is high in the eastern sky, and is brighter than it has been for many years. Last night my telescope again revealed the strange polar hood which is a feature of the planet at this time in its cycle. Because of its current prominence in the night sky, it is a very appropriate time to bring together and reappraise what we know of Mars and look forward to the next wave of planetary exploration. The initial notion of writing a book about Mars is an exciting one; the practicalities involved in working through and completing the project are, however, more than a trifle exacting. The first problem I encountered was the sheer vastness of the library of information about Mars which now exists. The second was the natural extension of the first, that is, how best to analyse it and reach widely acceptable interpretations. I have tried to write the story of Mars in a logical and unbiased way, however, we all have our individual prejudices, and I would be less than truthful if I did not admit to personal bias here and there. With this in mind, I apologise to any authors who may feel either misinterpreted or less than adequately acknowledged. The project is now completed and has been superbly prepared by Chapman & Hall.
The book presents the most recent developments of laboratory studies in astrophysics and space research. The individual chapters review laboratory investigations under simulated space conditions, studies for the design of successful space experiments or for supporting the interpretation of astronomical and space mission recorded data. Related theoretical models, numerical simulations and in situ observations demonstrate the necessity of experimental work on the Earth's surface. The expertise of the contributing scientists covers a broad spectrum and is included in general overviews from fundamental science to recent space technology. The book intends to serve as a reference for researchers and graduate students on the most recent activities and results in laboratory astrophysics, and to give reviews of their applications in astronomy, planetology, cosmochemistry, space research and Solar System exploration.
The articles in this volume cover, for the first time, all aspects of planetary magnetism, from the observations made by space missions to their interpretation in terms of the properties of all the planets in the solar system. Studies of dynamo-generated magnetic fields in Mercury, the Earth, the giant planets, as well as in Ganymede, one of Jupiter s moons, are presented. Crustal magnetic field in Mars, the Mon and the Earth are described as well as magnetic fields induced in the solar system bodies. There are several articles dealing with dynamo theory and modelling and applications to the different planets."
As in the days following Skylab, solar physics came to the end of an era when the So lar Maximum Mission re-entered the earth's atmosphere in December 1989. The 1980s had been a pioneering decade not only in space- and ground-based studies of the solar atmosphere (Solar Maximum Mission, Hinotori, VLA, Big Bear, Nanc;ay, etc.) but also in solar-terrestrial relations (ISEE, AMPTE), and solar interior neutrino and helioseismol ogy studies. The pace of development in related areas of theory (nuclear, atomic, MHD, beam-plasma) has been equally impressive. All of these raised tantalizing further questions about the structure and dynamics of the Sun as the prototypical and best observed star. This Advanced Study Institute was timed at a pivotal point between that decade and the realisation of Yohkoh, Ulysses, SOHO, GRANAT, Coronas, and new ground-based optical facilities such as LEST and GONG, so as to teach and inspire the up and coming young solar researchers of the 1990s. The topics, lecturers, and students were all chosen with this goal in mind, and the result seems to have been highly successful by all reports."
Collision-or interaction-induced spectroscopy refers to radiative transitions, which are forbidden in free atoms or molecules, but which occur in clusters of interacting atoms or molecules. The most common phenomena are induced absorption, in the infrared region, and induced light scattering, which involves inelastic scattering of visible laser light. The particle interactions giving rise to the necessary induced dipole moments and polarizabilities are modelled at long range by multipole expansions; at short range, electron overlap and exchange mechanisms come into play. Information on atomic and molecular interactions and dynamics in dense media on a picosecond timescale may be drawn from the spectra. Collision-induced absorption in the infrared was discovered at the University of Toronto in 1949 by Crawford, Welsh and Locke who studied liquid O and N. Through the 1950s and 1960s, 2 2 experimental elucidation of the phenomenon, particularly in gases, continued and theoretical underpinnings were established. In the late 1960s, the related phenomenon of collision-induced light scattering was first observed in compressed inert gases. In 1978, an 'Enrico Fermi' Summer School was held at Varenna, Italy, under the directorship of J. Van Kranendonk. The lectures, there, reviewed activity from the previous two decades, during which the approach to the subject had not changed greatly. In 1983, a highly successful NATO Advanced Research Workshop was held at Bonas, France, under the directorship of G. Birnbaum. An important outcome of that meeting was the demonstration of the maturity and sophistication of current experimental and theoretical techniques.
This volume contains the reviews and poster papers presented at the workshop Solar Convection and Oscillations and their Relationship: SCORe '96, held in Arhus, Denmark, May 27 - 31, 1996. The aim of this workshop was to bring together experts in the fields of convection and helioseismology, and to stimulate collaborations and joint research. The participation to this workshop was purposely kept limited in order to provide optimal conditions for informal discussions. In autumn of 199,5 the long-awaited GONG network of solar telescopes became fully operational and the first data already show significant improvement over existing datasets on solar oscillations. Furthermore, in December of 1995 the satellite SOHO was launched which, together with GONG, provides a major step forward in both the quantity and the quality of available solar oscillation data. It is with this in mind that we decided to organize the workshop to prepare for the optimal use of this wealth of data, with which to deepen our understanding of solar structure and specifically, of one of the longest-standing problems in solar and stellar modelling: the treatment of convection.
J 2 J. MICHAEL SHl: LL, HARLEY A. THRO: \SOX, JR., A: '>D S. ALAN STER: \3 I University of Colorado, Dept. of Astrophysical. Planetary, &. Atmospheric Sciences 2 University of Wyoming and KASA Headquarters, Code SR 3 Southwest Research Institute, Boulder Office On May 15-17. 1995, three Rocky Motultain research institutions hosted a confererJce to dis cuss the scientific basis, teclmological options, and programmatic implications of a large-scale effort to find and study Earth-like planets outside the Solar System. Our workshop attracted scientists, erJgineers, space agency administrators, and the public media to discuss and debate the most promising teclmological options and opportunities. Major programs and proposals to search for and study exo-planets were preserJted and discussed. In addition, our meeting - incided .with NASA's "roadmap" study for the Exploration of Neighboring Planetary Systems ( "'\PS). Our meeting was the first international confererJce on this subject, affording an op portunity for several members of this study to participate in the debates over new technologies. Our meeting proyed to be timely. Shortly thereafter, in late 199.5 and early 1996, two groups of astronomers annotulced the first discoveries of planetary companions to nearby stars. using high-precision radial velocity measuremerJts to detect the gravitational reflex motion of the star. The first three detections include a Jupiter-mass companion to the solar-like star. 51 Pegasi, and two remarkable objects of mass at least 2. 3 and 6."
Continuum radio emission and fine structure (in particular millisecond spikes) have recently raised interest as diagnostic tools for the interpretation of energy release and particle acceleration in flares. In the circles of the European solar radio astronomers, loosely organized in CESRA, the idea of a workshop came up intended for active observers of the impulsive phase of flares in radio and associated emissions. The scientific organizing committee included A.D. Benz (chairman), A. Magun, M. Pick, G. Trottet, and P. Zlobec. The workshop was held on May 27-31, 1985 in the castle of Duino near Trieste, Italy. The meeting intended to find a common terminology, to compare radio observations with measurements in other emissions and to confront observations with theoretical concepts. We have achieved a representative summary on the current status of the field and a clear perspective for the next cycle. This volume contains the reviews and a selection of contributions and extended abstracts of papers presented at the workshop. I wish to thank the local organizers, in particular A. Abrami, M. Comari, F. Depolli, L. Fornasari, M. Messerotti (chairman), M. Nonino, and P. Zlobec. Financial support was graciously provided by the Italian Research Council (CNR). Most of all, however, I would like to express my thankfulness to our host, His Highness Prince Raimondo della Torre e Tasso, for his invaluable hospitality. We are deeply sorry to hear of his passing in the meantime. To his memory these proceedings are dedicated.
Mars, the most habitable of our sister planets, holds a special place in our imaginations and in our space exploration program. Fully half of NASA's planetary exploration effort is now devoted to Mars. Key questions include: Has Mars ever harbored life? Is there life on Mars now? Will humans be able to survive on the Martian surface? Answers to these questions lie in determining the present location of water on Mars and its likely inventory in the past, and in determining the present radiation environment of Mars. The 2001 Mars Odyssey Mission contributes greatly these answers by detecting near-surface water through measurements of neutron flux, from the detection of carbonates, and the quantification of its radiation environment. This book captures the objectives, the design of the mission and the details of the instruments carried to Mars. It should be of interest to every scientist interested in participating in the on-going exploration of Mars from graduate students to senior scientists as it provides the background information essential to interpret the many exciting results now appearing from the mission.
Since Luna and Lunar Orbiter photographed the far side of the Moon, the mysterious dichotomy between the face of the Moon as we see it from Earth and the side of the Moon that is hidden has puzzled lunar scientists. As we learned more from the Apollo sample return missions and later robotic satellites, the puzzle literally deepened, showing asymmetry of the crust and mantle, all the way to the core of the Moon. This book summarizes the author's successful search for an ancient impact feature, the Near Side Megabasin of the Moon and the extensions to impact theory needed to find it. The implications of this ancient event are developed to answer many of the questions about the history of the Moon.
The purpose of the book is a dual one: to detail the nature and results of Tunguska investigations in the former USSR and present-day CIS, and to destroy two long-standing myths still held in the West. The first concerns alleged "final solutions" that have ostensibly been found in Russia or elsewhere. The second concerns the mistaken belief that there has been little or no progress in understanding the nature of the Tunguska phenomenon. All this is treated by the author in a scholarly and responsible manner. Although the book does present certain unusual findings of Russian and Ukrainian scholars, it is important to stress that this is not a sensational book; it is, rather, a serious exposition of the results of rational investigations into a difficult scientific problem. We are demonstrating the true complexity of the problem that is now entering its second century of existence. Simple meteoritic models cannot explain all the characteristics of this complicated event, and therefore certain so-called "unconventional hypotheses" about the nature of the Tunguska explosion are to be considered as well.
Solar physics in India has a tradition that can be traced to the setting up of the Kodaikanal Observatory in 1899 when the Madras Observatory was relocated to a high altitude site with a view to initiate observations of the sun. This conference on Magnetic Coupling between the Interior and the Atmosphere of the Sun during 2-5 December 2008 was planned to coincide with centenary of the Evershed effect discovery at Kodaikanal in 1909. The aim of this meeting was to bring to a critical focus a comprehensive - derstanding of the important issues pertaining to solar magnetism with particular emphasis on the various MHD processes that operate in the solar atmosphere. The current status of magnetic eld measurements and their implications in the light of recenttheoriesandnumericalmodelingthataddressthe fundamentalscalesandp- cessesinthehighlymagnetizedturbulentplasmawerereviewedduringthismeeting. The meeting was timely for the following reasons: Space observations such as from SOHO and TRACE have provided a wealth of multiwavelength observations onprocessesoccurringinregionsofthe atmosphereextendingfromthe photosphere up to the outer corona. With the launch of Hinode and STEREO in 2006 and of SDO (Solar Dynamics Observatory) shortly, this conference provided a platform for in-depth discussions on new results from various space missions as well as a comparison with ground-based observing facilities such as the Swedish 1-m Solar Telescope. Using sophisticated image processing techniques, such telescopes r- tinelygenerateobservationswitharesolutionbetterthan0. 1arcsec,therebyyielding more informative diagnostics for instance of the microstructure of ux tubes.
This book presents basic information on material science (geochemistry, geophysics, geology, mineralogy, etc.), interaction between subsystem consisting earth system (atmosphere, hydrosphere, litho (geo) sphere, biosphere, humans) and in earth-planet system and evolution of earth-planetary system. The nature-humans interactions are described and new view on earth, planets and humans (integration of anthropocentrism and naturecentrism) are presented.
The inner magnetosphere plasma is a very unique composition of different plasma particles and waves. It covers a huge energy plasma range with spatial and time variations of many orders of magnitude. In such a situation, the kinetic approach is the key element, and the starting point of the theoretical description of this plasma phenomena which requires a dedicated book to this particular area of research.
nd The 2 SORO Workshop on "Mass Supply and Flows in the Solar Corona" was held in Marciana Mariana on the island of Elba, Italy, in the week September 27 to October 1, 1993, as part of a series of workshops planned by the Solar Corona and Particles Working Group of the SOHO Science Working Team (SWT). The purpose of this workshop series is to acquaint the solar community with the capabilities of SORO, and prepare scientific projects and observing plans for the mission. This Workshop, which was at tended by more than one hundred scientists from different countries, focused on the following topics: 1) Fine Scale Structures 2) Loops and Prominences 3) Coronal Streamers 4) Coronal Roles and Solar Wind Each of these four topics was introduced by an observational and a theo retical overview highlighting the most recent advances in their area. A third review illustrated how SORO might help in solving open problems. Oral pa pers and poster presentations were followed by Working Group sessions. On the last day of the Workshop the Group Leaders reported on the activities of their Working Group. These proceedings include most of the papers presented at the Work shop, including the poster papers and Working Group reports by the Group Leaders as well as two overview papers of the SORO mission. All papers have been refereed.
Leading researchers in the area of the origin, evolution and distribution of life in the universe contributed to Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. This volume provides a review of this interdisciplinary field. In 50 chapters many aspects that contribute to exobiology are reviewed by 90 authors. These include: historical perspective of biological evolution; cultural aspects of exobiology, cosmic, chemical and biological evolution, molecular biology, geochronology, biogeochemistry, biogeology, and planetology. Some of the current missions are discussed. Other subjects in the frontier of exobiology are reviewed, such as the search for planets outside the solar system, and the possible manifestation of intelligence in those new potential environments. The SETI research effort is well represented in this general overview of exobiology. This book is the proceedings of the Fifth Trieste Conference on Chemical Evolution that took place in September 1997. The volume is dedicated to the memory of Nobel Laureate Abdus Salam who suggested the initiation of the Trieste conferences on chemical evolution and the origin of life. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin, evolution and distribution of life in the universe.
In this volume of essays, the top experts and major players behind
the United States's recently renewed push to the moon fuel a
growing debate over lunar exploration. The announcement in 2004
that the U.S. would be revamping its moon program inspired both
excitement about the possibilities and concern over cost and safety
issues. This book takes the controversy out of the realm of pure
science and into the mainstream of national debate. Lunar experts
Alan Binder, Andy Chaikin, Yoji Kondo, Courtney Stadd, Frank White,
and many others weigh in on the case for a return, point out the
best way to do it, and speculate on what could be done with this
newly obtained real estate. The essays are accompanied by
illustrations of what life on the moon might look like.
Contributions come from different perspectives and styles, offering
a broad take on the very real possibility that humans will again
walk-- and work, live, and play-- on the lunar landscape. From
telescopes and tourism, to training for Mars, to building a new
branch of humanity and saving the Earth, this compendium makes the
case for sending people back to the moon.
This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.
K. O. KIEPENHEUER ( Fraunhofer Institut, Freiburg i. Br., Germany) The present symposium, to my knowledge the largest ever held in the field of solar research (170 astronomers from 21 countries) was held in the building of the Hun garian Academy of Sciences in Budapest from September 4 to 8, 1967. It was the 35th symposium organized and sponsored by the International Astronomical Union. The majority of participants were financedfrom national sources. The Organizing Commit tee consisted of K. O. Kiepenheuer (Chairman), L. Davis, L. Dezso (Local Organizer), A.D. Fokker, R. Michard, A.B. Severny, H.J. Smith, Z. Svestka, and H. Tanaka. In order to ensure prompt publication, the manuscripts had to be supplied by the authors 1 month after the meeting. The discussions have been recorded on tape. Their reproduction in this book, however, is based almost completely on the contributors' writing down their comments and questions on the spot. Two special projects have been reported and discussed shortly during the sym posium: The world wide project 'Cooperative Study of Solar Active Regions' (CSSAR) organized by Dr. R. Michard, under the auspices of the IAU, which has put at the disposal of our solar community a precious observing material on Active Regions over a period of 6 months."
Every year Earth is bombarded with about 40,000 tons of extraterrestrial material. This includes microscopic cosmic dust particles shed by comets and asteroids in outer space, meteorites, as well as large comets and asteroids that have led to catastrophic events in the geologic past. Originally considered only a curiosity, extraterrestrial matter found on Earth provides the only samples we have from comets, asteroids and other planets. Only recently mankind has started to actively collect extraterrestrial matter in space (Apollo program, Stardust mission) rather than to wait for its delivery to Earth. Still, most of our knowledge of the origin and evolution of our solar system is based on careful studies of meteorites, cosmic dust, and traces of large impact events in the geologic record such as the mass extinction that terminated the Cretaceous Period and led to the extinction of the dinosaurs. This book summarizes our current knowledge of the properties, origin, orbital evolution and accretion mechanism of extraterrestrial matter accreted on Earth and sheds light on accretion processes and fluxes in the geologic past. The chapters in the first part of the book are arranged in order to follow extraterrestrial matter from its origin in space, its orbital evolution on its way to Earth, its interaction with the Earth magnetosphere and atmosphere to its more or less violent collision with the Earth's surface. In the second part of the book several chapters deal with the present?day flux of cosmic dust and meteorites to Earth. Finally, several chapters deal with the reconstruction of the accretion history of extraterrestrial matter on Earth, starting with the most recent geologic past and ending with the very early, violent accretion period shortly after the formation of Earth, Moon and other solid planets in our solar system.
Overview xiii COMETS IN PERSON 1 A Comet Passes 3 COMETS IN GENERAL 2 Anatomy of a Ghost 27 3 Dirty Snowballs and the Nurseries of Leviathans 51 4 The Spectacular Deaths of Comets 61 5 Swords of Damocles 86 6 Observing and Discovering Comets 110 HALLEY AND THE SHORT PERIOD COMETS 7 Halley and Its Periodic Kin 133 8 Through the Ages with Halley's Comet 157 COMETS WILD 9 What Makes a Comet Great? 197 10 The Comets Before 1700 204 11 The Comets from 1700 to 1995 229 vii viii COMET OF THE CENTURY THE LATEST GREATS 12 The Grand Approach of Comet Hale-Bopp 273 13 Hyakutake Lightning 291 14 A Narrative Calendar for Observing Hale-Bopp 305 15 Comet of the Century 328 Appendix A: Periodic Comet Numbers 331 Appendix B: Great Comets in History 335 AppendixC: Closest Comets in History 339 Appendix D: Celestial Coordinates 344 Appendix E: Orbital Elements 346 Appendix F: Comet Brightness Formula and Estimating Brightness 348 AppendixG: How to Report a Comet Discovery 351 AppendixH: Ephemeris for Comet Hale-Bopp 354 Glossary 359 Sources of Information 367 Credits 371 Generaiindex 373 Comet Index 381 PRtl7ACt This book may be loaded with a richness of facts, but what it's about, through and through, is simple and blazing: the way comets, throughout history, and up to the present, have stirred the human spirit.
NASA's Advanced Composition Explorer (ACE) was launched on August 25, 1997, carrying six high-resolution spectrometers that measure the abundances of the elements, isotopes, and ionic charge states of energetic nuclei in space. Data from these instruments is being used to measure and compare the composition of the solar corona, the nearby interstellar medium, and cosmic-ray sources in the Galaxy, and to study particle acceleration processes in a variety of environments. ACE also includes three instruments that monitor solar wind and energetic particle activity near the inner Lagrangian point, "1.5 million kilometers sunward of Earth, and provide continuous, real-time data to NOAA for use in forecasting space weather. Eleven of the articles in this volume review scientific progress and outline questions that ACE will address in solar, space-plasma, and cosmic-ray physics. Other articles describe the ACE spacecraft, the real-time solar-wind system, and the instruments used to measure energetic particle composition.
Due to its specific chemical and physical properties, water is essential for life on Earth. And it is assumed that this would be the case for extraterrestrial life as well. Therefore it is important to investigate where water can be found in the Universe. Although there are places that are completely dry, places where the last rainfall happened probably several 100 million years ago, surprisingly this substance is quite omnipresent. In the outer solar system the large satellites of Jupiter and Saturn are covered by a thick layer of ice that could be hiding a liquid ocean below. This of course brings up the question of whether the recently detected extrasolar planets could have some water on their surfaces and how we can detect this. Water molecules are also found in interstellar gas and dust clouds. This book begins with an introductory chapter reviewing the physical and chemical properties of water. Then it illuminates the apparent connection between water and life. This is followed by chapters dealing with our current knowledge of water in the solar system, followed by a discussion concerning the potential presence and possible detection of water on exoplanets. The signature of water in interstellar space and stars are reviewed before the origin of water in the Universe is finally discussed. The book ends with an appendix on detection methods, satellite missions and astrophysical concepts touched upon in the main parts of the book. The search for water in the Universe is related to the search for extraterrestrial life and is of fundamental importance for astrophysics, astrobiology and other related topics. This book therefore addresses students and researchers in these fields. |
![]() ![]() You may like...
Magnetic Fields in the Solar System…
Hermann Luhr, Johannes Wicht, …
Hardcover
R5,684
Discovery Miles 56 840
Lunar Reconnaissance Orbiter Mission
R R Vondrak, J W Keller
Hardcover
R5,118
Discovery Miles 51 180
Fluid Mechanics of Planets and Stars
Michael Le Bars, Daniel Lecoanet
Hardcover
R2,892
Discovery Miles 28 920
|