![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
"How to Observe the Sun Safely, 2nd Edition" gives all the basic
information and advice the amateur astronomer needs to get started
in observing our own ever-fascinating star. Unlike many other
astronomical objects, you do not need a large telescope or
expensive equipment to observe the Sun. And it is possible to take
excellent pictures of the Sun with today's low-cost digital cameras
Phenomenal new observations from Earth-based telescopes and Mars-based orbiters, landers, and rovers have dramatically advanced our understanding of the past environments on Mars. These include the first global-scale infrared and reflectance spectroscopic maps of the surface, leading to the discovery of key minerals indicative of specific past climate conditions; the discovery of large reservoirs of subsurface water ice; and the detailed in situ roving investigations of three new landing sites. This an important, new overview of the compositional and mineralogic properties of Mars since the last major study published in 1992. An exciting resource for all researchers and students in planetary science, astronomy, space exploration, planetary geology, and planetary geochemistry where specialized terms are explained to be easily understood by all who are just entering the field.
This symposium was held at the College de France in Paris from August 31 to Sep tember 4, 1970. The Organizing Committee consisted of V. Bumba, R. Howard (Chairman), K. O. Kiepenheuer, R. Michard, E. N. Parker, A. B. Severny, V. E. Stepanov, and T. Takakura. The Local Organizing Committee consisted of Miss G. Drouin (Secretary), R. Michard (Chairman), J. -C. Pecker, and J. Rayrole. We are indebted to the College de France for their kind hospitality. I wish to express my gratitude to members of the Organizing Committee for advice and assistance and to R. Michard and the Local Organizing Committee, who were responsible for the smooth running of the sessions, the distribution and collection of the discussion sheets, and for a delightful Wednesday afternoon excursion to Meudon. It is a pleasure to thank J. W. Evans, V. E. Stepanov, K. O. Kiepenheuer, R. G. Giovanelli, T. G. Cowling, V. Bumba, W. C. Livingston, and J. M. Wilcox who kindly served as session chairmen. I also wish to thank Miss Judy Harstine and John M. Adkins of the Hale Observatories, for invaluable assistance in editing the proceedings. This Symposium has been supported financially by the International Astronomical Union."
In the early part of the eighteenth century, Francesco Bianchini of
Verona turned his primitive telescope - a refractor of only a few
centimetres aperture but with an enormous focal length of around 20
metres - on the planet Venus. He recorded some of the first
telescopic observations of Venus, outstanding in terms of care and
accuracy. Bianchini determined the parallax of the planet,
estimated the period of rotation, and carefully mapped surface
features (although we now know that only Venus' atmospheric clouds
can be seen in visible light).
This book presents basic information on material science (geochemistry, geophysics, geology, mineralogy, etc.), interaction between subsystem consisting earth system (atmosphere, hydrosphere, litho (geo) sphere, biosphere, humans) and in earth-planet system and evolution of earth-planetary system. The nature-humans interactions are described and new view on earth, planets and humans (integration of anthropocentrism and naturecentrism) are presented.
The widespread tendency in solar physics to divide the solar atmosphere into separate layers and to distinguish phenomena of solar activity from phenomena of the quiet Sun emphasizes the wide ranging diversity of physical conditions and events occurring in the solar atmosphere. This diversity spans the range from a neutral, essentially quiescent atmosphere to a highly ionized, violently convective atmosphere; from a domain in which magnetic field effects are unimportant to a domain in which the magnetic pressure exceeds the gas pressure, and from a domain in which the particle motions are Maxwellian to a domain in which an appreciable fraction of the particles is accelerated to relativistic energies. It is now widely recognized that the chromosphere and corona have a common origin in the mechanical energy flux generated in the hydrogen convection zone lying beneath the photosphere. Furthermore, magnetic field phenomena appear to be as vital to the structure of th~ quiet Sun as to the active Sun. For these reasons it appears desirable to present a unified treatment of the entire solar atmosphere, both active and quiet, in a single volume. On the other hand, such a treatise must be very long if it is to avoid being superficial, and it is very difficult for a single author to write authoritatively on such a wide range of topics.
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
Planetary Aeronomy is a modern and concise introduction to the underlying physical and chemical processes that govern the formation and evolution of the upper atmospheres of planets. The general approach employed permits consideration of the growing number of extrasolar planets, the detailed observation of which will become possible over the next decades. The book explains the physics behind many atmospheric processes, which are relevant for the evolution of planetary atmospheres and their water inventories, and also contains useful scaling laws and analytical expressions that can be applied to any planet. Readers thus gain insight into the evolution of terrestrial planets and their long-time habitability, atmospheric stability, etc. This volume can be used both as graduate textbook for students wishing to specialize in the field as well as succinct compendium for researchers in the field.
This book contains the proceedings of the Summerschool and Workshop Motions in the Solar Atmosphere held from September 1st to September 12th, 1997, at the Solar Observatory Kanzelh6he, which belongs to the Astronomical Institute of the University of Graz, Austria. This type of conference has proved to be very successful in bringing together experts from specialized topics in solar physics and young scientists and students from different countries. Moreover, the summerschool was accompanied by a workshop which offered young scientists the opportunity to present their new results to a general audience. In total the summerschool and the workshop were attended by 50 par ticipants from 10 different countries. The topic selected was quite general, covering the whole solar atmo sphere and its dynamic processes: from dynamo actions and large and small scale motions in the photosphere through the complex dynamics of the chro mosphere to the corona. Also the possible influences of variations in solar output parameters to the Earth's climate were addressed. The main lec tures were given by 7 lecturers. Furthermore, there were 20 contributions to the workshop which were presented in oral form. The selection of the Kanzelh6he Solar Observatory located in Central Europe, Austria, also permitted colleagues from the former eastern coun tries to attend the meeting. At the Kanzelh6he Observatory new instru ments had been recently installed so that the meeting provided a further stimulus for the local people working there."
The reader has been introduced to a number of topics, taken from Toka- mak research, in order to trace the the development of applications of spec- troscopy in controlled fusion research over the last 35 years, from the early toroidal devices like ZETA to present-day Tokamaks. The subject of plasma spectroscopy has grown in sophistication in terms of the expansion of the atomic processes which have to be considered and their associated data base, the complexity of the experimental techniques and the wide range of diag- nostic applications. Plasma spectroscopy has increased our appreciation of the subtle role of impurities in determining much of the plasma behaviour. Control of impurities, by techniques such as wall conditioning, magnetic divertors, pellet or atomic beam injection and radiation mantles, offers a wealth of future investigations. Acknowledgements The author would like to acknowledge the help and inspiration he has derived from his students past and present in writing this article. In particular he is indebted toM O'Mullane for his technical help in preparing the manuscript and whose research work is featured in the sections on MARFEs and ion transport. References Abbey, A. F., Barnsley, R., Dunn, J., Lea, S. N. and Peacock, N.J.: 1993, UVand X-ray Spectroscopy of Laboratory and Astrophysical Plasmas. (editors, E Silver and S. Khan) Cambridge University Press, 493. Afrosimov, V. V., Gordeev, Y.S. et al.: 1979, J.E. T.P. Lett. 28, 501. Alper, B.: 1995, p.r.ivate communication, JET.
Stellar Physics is a rather unique book among the growing
literature on star formation and evolution. Not only does the
author, a leading expert in the field, give a very thorough
description of the current knowledge about stellar physics but he
handles with equal care the many problems that this field of
research still faces. A bibliography with well over 650 entries
makes this book an unparalleled source of references.
These are exciting times for exobiology. The ubiquity of organic molecules in interstellar clouds, comets and asteroids strongly supports a cosmic perspective on the origin of life. Data from both ground-based telescopes and the recently launched Infrared Space Observatory are providing new insight into the complexity of carbon-based chemistry beyond the Earth. Meteorites give us solid evidence for extraterrestrial amino acids, and putative fossil evidence for life in a 3.6 billion-year-old Martian meteorite hints that life in our system might not be the sole prerogative of the Earth. Giant planets have now been discovered orbiting other stars, and although such planets seem unlikely to be habitable themselves, their existence strongly suggests what many astronomers have long believed - that planetary systems are commonplace. All these topics are reviewed in this volume by active researchers. The level is appropriate for graduate students in astronomy, biology, chemistry, earth sciences, physics, and related disciplines. It will also provide a valuable source of reference for active researchers in these fields.
Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different from the newly discovered systems. Then the study of planetary systems and of exoplanets is presented from a more theoretical point of view. The book ends with an outlook to future astronomical projects, and a description of the search for life on exoplanets. This book addresses students and researchers who wish to better understand this newly expanding field of research.
Audouin Dollfus Observatoire de Paris, Section de Meudon, 92195 Meudon, FRfu CE The North Atlantic Treaty Organization (NATO) and, in particular, its Department of Scientific Affairs headed by Dr. C. Sinclair, actively supports new fields of science. The recent exploration of the outer parts of the Solar System by spacecraft focused the attention of a large community of scientists on the problem of ices, which playa major role in the accretionary processes in space except for the close neighborhood of the Sun and of other stars. NATO responded to this new interest by agreeing to sponsor an Advanced Research Workshop "Ices in the Solar System," provided a proper organizing body could be set up. It was a pleasure to organize such a workshop jointly with Profes sor Roman Smoluchowski who had earlier organized similar conferences. I knew from the experience of others who managed such meetings in the past that there would be much work, but the opportunity of cooperating with Smoluchowski was very attractive and convinced me to agree. If well organized, the whole project promised to be more than rewarding for a large community of scientists, both in the short run and in the long run, by clarifying certain outstanding questions in astrophysics. It became clear that a well-organized international conference would attract top scientists and help unravel many fundamental problems."
This book reviews the current state of knowledge of the
atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus,
and Neptune. The current theories of their formation are reviewed
and their recently observed temperature, composition and cloud
structures are contrasted and compared with simple thermodynamic,
radiative transfer and dynamical models. The instruments and
techniques that have been used to remotely measure their
atmospheric properties are also reviewed, and the likely
development of outer planet observations over the next two decades
is outlined.
Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar activity from the last minimum in solar activity in 1996 to its maximum in 2000 and the subsequent decline in activity."
The last decade of this century has seen a renewed interest in the dynamics and physics of the small bodies of the Solar System, Asteroids, Comets and Meteors. New observational evidences such as the discovery of the Edgeworth-Kuiper belt, refined numerical tools such as the symplectic integrators, analytical tools such as semi-numerical perturbation algorithms and in general a better understanding of the dynamics of Hamiltonian systems, all these factors have converged to make possible and worthwhile the study, over very long time spans, of these "minor" objects. Also the public, the media and even some political assell}blies have become aware that these "minor" objects of our planetary environnement could become deadly weapons. Apparently they did have a role in Earth history and a role more ominous than "predicting" defeat (or victory, why not?) to batches of credulous rulers. Remembering what may have happened to the dinosaurs but keeping all the discretion necessary to avoid creating irrational scares, it may not be unwise or irrelevant to improve our knowledge of the physics and dynamics of these objects and to study in particular their interactions with our planet.
This is the first collection of review articles in one volume covering the very latest developments in exoplanet research. This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field this field. The reviews cover topics such as the properties of known exoplanets and searching for exoplanets in the stellar graveyard. The book provides an easily accessible point of reference in a fast moving and exciting field.
Observational, experimental and analytical data show that C60,
larger fullerenes, and related structures of elemental carbon exist
in interstellar space, meteorites, and on Earth and are associated
with meteorite in impact events and in carbon-rich environments
such as coals (shungite) and bitumen. The existence of natural
fullerenes is at best contested and incompletely documented;
realistically it is still controversial. Their presence in
astronomical environments can be experimentally constrained but
observationally they remain elusive. Fullerenes formation in
planetary environments is poorly understood. They survived for
giga-years when the environmental conditions were exactly right but
even then only a fraction of their original abundance survived.
Natural fullerenes and related carbon structures are found in
interstellar space, in carbonaceous meteorites associated with
giant meteorite impacts (including at the Cretaceous-Tertiary
boundary) as well as in soot, coal and natural bitumen.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.
Several major breakthroughs in the last decade have helped contribute to the emerging field of astrobiology. Focusing on these developments, this fascinating book explores some of the most important problems in this field. It examines how planetary systems formed, and how water and the biomolecules necessary for life were produced. It then focuses on how life may have originated and evolved on Earth. Building on these two themes, the final section takes the reader on a search for life elsewhere in the Solar System. It presents the latest results of missions to Mars and Titan, and explores the possibilities of life in the ice-covered ocean of Europa. This interdisciplinary book is an enjoyable overview of this exciting field for students and researchers in astrophysics, planetary science, geosciences, biochemistry, and evolutionary biology. Colour versions of some of the figures are available at www.cambridge.org/9780521875486.
This volume helps the reader to understand the ways and means of how dynamical phenomena are generated at the Sun, how they travel through the Heliosphere, and how they affect Earth. It provides an integrated account of the three principal chains of events all the way from the Sun to Earth: the normal solar wind, coronal mass ejections, and solar energetic particles.
Cathodoluminescence microscopy/spectroscopy is a powerful technique providing detailed information on the shock metamorphism of target rocks, biosignatures of meteorites and mineralogy of the pre-solar grains. Moreover, it can be used as an in-situ method to classify the solid-atmospheric-liquid interactions on the surface of Mars.
An asteroid or comet will inevitably strike the Earth some day, and potentially cause great destruction. This volume considers hazards due to collisions with cosmic objects, particularly in light of recent investigations of impacts by the authors. Each chapter, written by an expert, contains an overview of an aspect and new findings in the field. Coverage describes and numerically estimates the main hazardous effects. |
You may like...
Assessment and Mitigation of Asteroid…
Josep M. Trigo-Rodriguez, Maria Gritsevich, …
Hardcover
Problems of Geocosmos-2018 - Proceedings…
Tatiana B. Yanovskaya, Andrei Kosterov, …
Hardcover
R4,058
Discovery Miles 40 580
|