![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
These are the Proceedings of Colloquium No. 153 of the International Astro nomical Union, held at Makuhari near Tokyo on May 22 - 26, 1995, and hosted by the National Astronomical Observatory. This meeting was intended to be an interdisciplinary meeting between re searchers of solar and stellar activity, in order for them to exchange the newest information in each field. While each of these areas has seen remarkable advances in recent years, and while the researchers in each field have felt that information from the other's domain would be extremely useful in their own work, there have not been very many opportunities for intensive exchanges of information between these closely related fields. We therefore expected much from this meeting in pro viding stellar researchers with new results of research on the counterparts of their targets of research, spatially and temporarily resolved, as observed on the Sun. Likewise we hoped to provide solar researchers with new results on gigantic ver sions of their targets of research under the very different physical circumstances on other active stars. It was our greatest pleasure that we had wide attendance of experts and active researchers of both research fields from all over the world. This led to extremely interesting talks and very lively discussions, thereby stimulating the exchange of ideas across the fields.
Leading researchers in the area of the origin and evolution of life in the universe contributed to Chemical Evolution: Physics of the Origin and Evolution of Life. This volume provides a review of this interdisciplinary field. In 35 chapters many aspects of the origin of life are discussed by 90 authors, with particular emphasis on the early paleontological record: physical, chemical, biological, and informational aspects of life's origin, instrumentation in exobiology and system exploration; the search for habitable planets and extraterrestrial intelligent radio signals. This book contains the proceedings of the Fourth Trieste Conference on Chemical Evolution that took place in September 1995, in which scientists from a wide geographical distribution joined in a Memorial to Cyril Ponnamperuma, who was a pioneer in the field of chemical evolution, the origin of life, and exobiology, and also initiated the Trieste Conferences on Chemical Evolution and the Origin of Life. This fourth Conference was therefore dedicated to his memory. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin of life.
Leading researchers in the area of the origin, evolution and distribution of life in the universe contributed to Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. This volume provides a review of this interdisciplinary field. In 50 chapters many aspects that contribute to exobiology are reviewed by 90 authors. These include: historical perspective of biological evolution; cultural aspects of exobiology, cosmic, chemical and biological evolution, molecular biology, geochronology, biogeochemistry, biogeology, and planetology. Some of the current missions are discussed. Other subjects in the frontier of exobiology are reviewed, such as the search for planets outside the solar system, and the possible manifestation of intelligence in those new potential environments. The SETI research effort is well represented in this general overview of exobiology. This book is the proceedings of the Fifth Trieste Conference on Chemical Evolution that took place in September 1997. The volume is dedicated to the memory of Nobel Laureate Abdus Salam who suggested the initiation of the Trieste conferences on chemical evolution and the origin of life. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin, evolution and distribution of life in the universe.
In astrology, each planet in our solar system is symbolically associated with specific archetypes, characteristics, themes and patterns in human experience. The discovery in 2005 of Eris -- a dwarf planet beyond Pluto -- was therefore an event of great significance for astrology as well as astronomy. In this unique book, Keiron Le Grice considers the astrological significance of Eris. How, he asks, can we determine Eris's meaning? What archetypal themes is it associated with? In what ways might the myths of Eris, the Greek goddess of strife, be relevant to the astrological meaning? What can Eris's discovery tell us about the evolutionary challenges we now face? Drawing on a wide variety of perspectives -- including mythology, ecology, religion, history, philosophy and Jungian psychology -- Le Grice carefully constructs a multi-faceted picture of Eris's possible meaning, helping to illuminate the unprecedented events of our time and providing clues to our possible future directions.
Based on lectures given at a CNRS summer school in France, this book covers many aspects of stellar environments (both observational and theoretical) and offers a broad overview of the field. More specifically, Part I of the book focuses on the Sun, the properties of the ejected plasma, of the solar wind and on space weather. The second part deals with tides in planetary systems and in binary stellar systems, as well as with interactions in massive binary stars as seen by interferometry. Finally the chapters of Part III discuss the very close environments of young stars; Stellar Winds, Magnetic Fields and Disks; Magnetic field and convection in the cool supergiant Betelgeuse; The formation of circumstellar disks around evolved stars; and an introduction to accretion disks is given. With its broad approach the book will provide graduate students with a good overview of the environments of the Sun and stars.
Given the past decade's explosion of neurobiological and paleontologi cal data and their increasingly sophisticated analyses, interdisciplinary syntheses between these two broad disciplines are of value and interest to many different scientists. The collected papers of this volume will appeal to students of primate and hominid evolution, neuroscientists, sociobiolo gists, and other behaviorists who seek a better understanding of the substrates of primate, including human, behavior. Each species of living primates represents an endpoint in evolution, but comparative neurologists can produce approximate evolutionary se quences by careful analyses of representative series. Because nervous tissue does not fossilize, only a comparison of structures and functions among extant primates can be used to investigate the fine details of primate bra~n evolution. Paleoneurologists, who directly examine the fossil record via endocasts or cranial capacities of fossil skulls, can best provide information about gross details, such as changes in brain size or sulcal patterns, and determine when they occurred. Physical anthropologists and paleontologists have traditionally relied more on paleoneurology, whereas neuroscientists and psychologists have relied more on comparative neurology. This division has been a detriment to the advancement of these fields and to the conceptual bases of primate brain evolution. Both methods are important and a synthesis is desirable. To this end, two symposia were held in 1980--one at the meeting of the American Association of Physical Anthro pologists in Niagara Falls, U. S. A. , and one at the precongressional meeting of the International Primatological Society in Torino, Italy.
Starting in 1995 numerical modeling of the Earth's dynamo has ourished with remarkable success. Direct numerical simulation of convection-driven MHD- ow in a rotating spherical shell show magnetic elds that resemble the geomagnetic eld in many respects: they are dominated by the axial dipole of approximately the right strength, they show spatial power spectra similar to that of Earth, and the magnetic eld morphology and the temporal var- tion of the eld resembles that of the geomagnetic eld (Christensen and Wicht 2007). Some models show stochastic dipole reversals whose details agree with what has been inferred from paleomagnetic data (Glatzmaier and Roberts 1995; Kutzner and Christensen 2002; Wicht 2005). While these models represent direct numerical simulations of the fundamental MHD equations without parameterized induction effects, they do not match actual pla- tary conditions in a number of respects. Speci cally, they rotate too slowly, are much less turbulent, and use a viscosity and thermal diffusivity that is far too large in comparison to magnetic diffusivity. Because of these discrepancies, the success of geodynamo models may seem surprising. In order to better understand the extent to which the models are applicable to planetary dynamos, scaling laws that relate basic properties of the dynamo to the fundamental control parameters play an important role. In recent years rst attempts have been made to derive such scaling laws from a set of numerical simulations that span the accessible parameter space (Christensen and Tilgner 2004; Christensen and Aubert 2006).
Are there other planetary systems like ours? Other planets like ours? Is there life elsewhere in the Universe?' So asks Dr. Lew Allen Jr. in the Foreword. In December of 1992, theorists, observers, and instrument builders gathered at the California Institute of Technology to discuss the search for answers to these questions. The International Conference, entitled Planetary Systems: Formation, Evolution, and Detection' and supported through NASA's newly formed TOPS (Toward Other Planetary Systems) program, was the first of a series of conferences uniting researchers across disciplines and political boundaries to share thoughts and information on planetary systems. The conference was sponsored by NASA, hosted by JPL at Caltech, and endorsed by the 1992 International Space Year Association. These proceedings include discussions of topics ranging from stellar, disk, and planetary formation to new ways of searching for other stellar systems containing planets. The authors represent a wide range of nationalities, disciplines, and points of view. The second international conference took place in December of 1993.
This symposium was held at the College de France in Paris from August 31 to Sep tember 4, 1970. The Organizing Committee consisted of V. Bumba, R. Howard (Chairman), K. O. Kiepenheuer, R. Michard, E. N. Parker, A. B. Severny, V. E. Stepanov, and T. Takakura. The Local Organizing Committee consisted of Miss G. Drouin (Secretary), R. Michard (Chairman), J. -C. Pecker, and J. Rayrole. We are indebted to the College de France for their kind hospitality. I wish to express my gratitude to members of the Organizing Committee for advice and assistance and to R. Michard and the Local Organizing Committee, who were responsible for the smooth running of the sessions, the distribution and collection of the discussion sheets, and for a delightful Wednesday afternoon excursion to Meudon. It is a pleasure to thank J. W. Evans, V. E. Stepanov, K. O. Kiepenheuer, R. G. Giovanelli, T. G. Cowling, V. Bumba, W. C. Livingston, and J. M. Wilcox who kindly served as session chairmen. I also wish to thank Miss Judy Harstine and John M. Adkins of the Hale Observatories, for invaluable assistance in editing the proceedings. This Symposium has been supported financially by the International Astronomical Union."
In the early part of the eighteenth century, Francesco Bianchini of
Verona turned his primitive telescope - a refractor of only a few
centimetres aperture but with an enormous focal length of around 20
metres - on the planet Venus. He recorded some of the first
telescopic observations of Venus, outstanding in terms of care and
accuracy. Bianchini determined the parallax of the planet,
estimated the period of rotation, and carefully mapped surface
features (although we now know that only Venus' atmospheric clouds
can be seen in visible light).
At the XV. General Assembly of the International Astronomical Union in Sydney 1973, Commission 10 for Solar Activity requested the incoming Organising Committee to establish a small group to recommend a standard nomenclature for solar features and to prepare an illustrated text which would clear the jungle of terms for the benefit of solar physicists as well as of theoreticians and research workers in related fields. The challenge was taken up by the president of Commission 10, Prof. K. O. Kiepenheuer, and his persuasive advocacy has led eventually to the present book. In the course of the work, the declared aim but not the basic purpose was revised. Rather than prepare a list of standard terms, we have preferred to collect together all the terms that appear in current English-language literature. Synonyms and partially overlapping terms are all recorded for the most part without prejudice. Each has been defined as exactly as possible with the hope that in the future they may be used and understood without ambiguity. It would be a step on the road to standardisation if these terms were not re-used for new phenomena. New observations and new theories will lead to reappraisals and redefinitions so the Glossary is intended more as a guide to the present situation than as a rule-book.
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
The widespread tendency in solar physics to divide the solar atmosphere into separate layers and to distinguish phenomena of solar activity from phenomena of the quiet Sun emphasizes the wide ranging diversity of physical conditions and events occurring in the solar atmosphere. This diversity spans the range from a neutral, essentially quiescent atmosphere to a highly ionized, violently convective atmosphere; from a domain in which magnetic field effects are unimportant to a domain in which the magnetic pressure exceeds the gas pressure, and from a domain in which the particle motions are Maxwellian to a domain in which an appreciable fraction of the particles is accelerated to relativistic energies. It is now widely recognized that the chromosphere and corona have a common origin in the mechanical energy flux generated in the hydrogen convection zone lying beneath the photosphere. Furthermore, magnetic field phenomena appear to be as vital to the structure of th~ quiet Sun as to the active Sun. For these reasons it appears desirable to present a unified treatment of the entire solar atmosphere, both active and quiet, in a single volume. On the other hand, such a treatise must be very long if it is to avoid being superficial, and it is very difficult for a single author to write authoritatively on such a wide range of topics.
Stellar Physics is a rather unique book among the growing
literature on star formation and evolution. Not only does the
author, a leading expert in the field, give a very thorough
description of the current knowledge about stellar physics but he
handles with equal care the many problems that this field of
research still faces. A bibliography with well over 650 entries
makes this book an unparalleled source of references.
These are exciting times for exobiology. The ubiquity of organic molecules in interstellar clouds, comets and asteroids strongly supports a cosmic perspective on the origin of life. Data from both ground-based telescopes and the recently launched Infrared Space Observatory are providing new insight into the complexity of carbon-based chemistry beyond the Earth. Meteorites give us solid evidence for extraterrestrial amino acids, and putative fossil evidence for life in a 3.6 billion-year-old Martian meteorite hints that life in our system might not be the sole prerogative of the Earth. Giant planets have now been discovered orbiting other stars, and although such planets seem unlikely to be habitable themselves, their existence strongly suggests what many astronomers have long believed - that planetary systems are commonplace. All these topics are reviewed in this volume by active researchers. The level is appropriate for graduate students in astronomy, biology, chemistry, earth sciences, physics, and related disciplines. It will also provide a valuable source of reference for active researchers in these fields.
This book reviews the current state of knowledge of the
atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus,
and Neptune. The current theories of their formation are reviewed
and their recently observed temperature, composition and cloud
structures are contrasted and compared with simple thermodynamic,
radiative transfer and dynamical models. The instruments and
techniques that have been used to remotely measure their
atmospheric properties are also reviewed, and the likely
development of outer planet observations over the next two decades
is outlined.
Audouin Dollfus Observatoire de Paris, Section de Meudon, 92195 Meudon, FRfu CE The North Atlantic Treaty Organization (NATO) and, in particular, its Department of Scientific Affairs headed by Dr. C. Sinclair, actively supports new fields of science. The recent exploration of the outer parts of the Solar System by spacecraft focused the attention of a large community of scientists on the problem of ices, which playa major role in the accretionary processes in space except for the close neighborhood of the Sun and of other stars. NATO responded to this new interest by agreeing to sponsor an Advanced Research Workshop "Ices in the Solar System," provided a proper organizing body could be set up. It was a pleasure to organize such a workshop jointly with Profes sor Roman Smoluchowski who had earlier organized similar conferences. I knew from the experience of others who managed such meetings in the past that there would be much work, but the opportunity of cooperating with Smoluchowski was very attractive and convinced me to agree. If well organized, the whole project promised to be more than rewarding for a large community of scientists, both in the short run and in the long run, by clarifying certain outstanding questions in astrophysics. It became clear that a well-organized international conference would attract top scientists and help unravel many fundamental problems."
Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar activity from the last minimum in solar activity in 1996 to its maximum in 2000 and the subsequent decline in activity."
Observational, experimental and analytical data show that C60,
larger fullerenes, and related structures of elemental carbon exist
in interstellar space, meteorites, and on Earth and are associated
with meteorite in impact events and in carbon-rich environments
such as coals (shungite) and bitumen. The existence of natural
fullerenes is at best contested and incompletely documented;
realistically it is still controversial. Their presence in
astronomical environments can be experimentally constrained but
observationally they remain elusive. Fullerenes formation in
planetary environments is poorly understood. They survived for
giga-years when the environmental conditions were exactly right but
even then only a fraction of their original abundance survived.
Natural fullerenes and related carbon structures are found in
interstellar space, in carbonaceous meteorites associated with
giant meteorite impacts (including at the Cretaceous-Tertiary
boundary) as well as in soot, coal and natural bitumen.
This is the first collection of review articles in one volume covering the very latest developments in exoplanet research. This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field this field. The reviews cover topics such as the properties of known exoplanets and searching for exoplanets in the stellar graveyard. The book provides an easily accessible point of reference in a fast moving and exciting field.
As a star in the universe, the Sun is constantly releas- cover a wide range of time and spatial scales, making ?? ing energy into space, as much as ?. ? ?? erg/s. Tis observations in the solar-terrestrial environment c- energy emission basically consists of three modes. Te plicated and the understanding of processes di?cult. ?rst mode of solar energy is the so-called blackbody ra- In the early days, the phenomena in each plasma diation, commonly known as sunlight, and the second region were studied separately, but with the progress mode of solar electromagnetic emission, such as X rays of research, we realized the importance of treating and UV radiation, is mostly absorbed above the Earth's the whole chain of processes as an entity because of stratosphere. Te third mode of solar energy emission is strong interactions between various regions within in the form of particles having a wide range of energies the solar-terrestrial system. On the basis of extensive from less than ? keV to more than ? GeV. It is convenient satellite observations and computer simulations over to group these particles into lower-energy particles and thepasttwo decades, it hasbecomepossibleto analyze higher-energy particles, which are referred to as the so- speci?cally the close coupling of di?erent regions in the lar wind and solar cosmic rays, respectively. solar-terrestrial environment.
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. This 2010 volume, the last in this series of three heliophysics texts, focuses on long-term variability from the Sun's decade-long sunspot cycle and considers the evolution of the planetary system over ten billion years from a climatological perspective. Topics covered range from the dynamo action of stars and planets to processes in the Earth's troposphere, ionosphere, and magnetosphere and their effects on planetary climate and habitability. Supplemented by online teaching materials, it can be used as a textbook for courses or as a foundational reference for researchers in fields from astrophysics and plasma physics to planetary and climate science.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
An asteroid or comet will inevitably strike the Earth some day, and potentially cause great destruction. This volume considers hazards due to collisions with cosmic objects, particularly in light of recent investigations of impacts by the authors. Each chapter, written by an expert, contains an overview of an aspect and new findings in the field. Coverage describes and numerically estimates the main hazardous effects. |
You may like...
Measurement and Analysis of Performance…
Masoomeh Rashidghalam
Hardcover
R1,408
Discovery Miles 14 080
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
Exam Ref AZ-305 Designing Microsoft…
Ashish Agrawal, Gurvinder Singh, …
Paperback
R766
Discovery Miles 7 660
Multilevel Strategic Interaction Game…
Eitan Altman, Konstantin Avrachenkov, …
Hardcover
R2,917
Discovery Miles 29 170
Compression and Coding Algorithms
Alistair Moffat, Andrew Turpin
Hardcover
R1,561
Discovery Miles 15 610
Global Nonlinear Stability of…
Sergiu Klainerman, Jérémie Szeftel
Paperback
R1,859
Discovery Miles 18 590
|