![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
Two models for the origin of the Solar System, the Nebula Theory and the Capture Theory, are discussed by protagonists, Simon and Steven respectively, in the presence of Solomon, who oversees the discussions. Modelled on Galileo's Dialogue Concerning the Two Chief World Systems, this book provides new insight into different theories of cosmogony.The Nebula Theory, at present the standard model of planet formation, proposes that a star and planets are derived from a single spinning nebula. Woolfson here introduces an alternative, the Capture Theory, in which planets are produced from a protostar tidally disrupted by a condensed star which 'captures' most of the formed planets into orbits. These complex ideas are simplified and presented in an easily understandable, accessible way for all students of physics, astronomy, cosmology and those interested in the beginning of our world as we know it.
In 2004, it became obvious that Henry Hatfield's original atlas wasn't suitable for all current commercially-made amateur telescopes. Newtonian telescopes and astronomical refractors - for many years the only choice for amateurs - invert the observed image. The standard Hatfield Atlas therefore follows the IAU (International Astronomical Union) convention of having maps (and photographs) with South at the top and West on the left: an inverted image. However, the current ranges of Schmidt-Cassegrain and Maksutov telescopes - that's most of those manufactured by Meade, Celestron, and many others - don't invert the observed image but instead reverse it left-for-right. That's with North at the top and East on the left. Because of the way the human visual system works, it is almost impossible to mentally 'mirror-image' a map to compare it with the view through the eyepiece , so even turning an IAU-standard atlas upside-down doesn't help! This new SCT version of the Atlas solves this problem for observers. Identification of lunar features is made quick and easy. The new, digitally re-mastered second edition vastly improves the clarity and definition of the original photographs - significantly beyond the resolution limits of the photographic grains present in earlier atlas versions - whilst preserving the layout and style of the original publications. This has been achieved by merging computer-visualized Earth-based views of the lunar surface, derived from NASA's Lunar Reconnaissance Orbiter data, with scanned copies of Commander Hatfield's photographic plates, using the author's own software. The result is a The Hatfield SCT Lunar Atlas for 21st century amateur telescopes up to and beyond 12-inch aperture. It contains all the features that made the original so widely used: a combination of an index of all International Astronomical Union named primary lunar features, and twelve chart areas help to locate any named lunar features of interest that can each be examined under typically five different states of illumination. Close ups of interesting features are also included. The new Atlas is supplemented by an introduction to its use, a short description of the digital re-mastering technique, and a completely new section describing lunar observing techniques. At the end of the atlas there is an index of all named features and crater diameters, along with a summary table of the dates and times that the original Hatfield images represent.
This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence "object" with some historical background on observations and instrumentation. In the next chapter, the various forms of prominences are described with a thorough attempt of classification. Their thermodynamic (and velocity) properties are then derived with emphasis on the methods (and their limits) used. This goes from the simplest optically thin case to the heavy radiative treatment of plasmas out of local thermodynamic equilibrium. The following chapters are devoted to the magnetic field measurements and indirect derivation. A new branch of diagnostic tools, the seismology, is presented along with some MHD basics. This allows to better understand the propagation of waves, the energy and force equilibria. Both small-scale and large-scale studies and their relationship are presented. The importance of the newly discovered cavities is stressed in the context of prominence destabilization. The issues of prominence formation and eruption, their connection with flares and Coronal Mass Ejections and their impact on the Earth are addressed on the basis of the latest results. Finally, an exciting new area of research is unveiled with the newly discovered evidence of similar manifestations in the Universe and their possible impact on the habitability of exoplanets. References to the basic physics (where necessary) are provided and the proposed web sites addresses will allow the reader to load exciting movies. The book is aimed at advanced students in astrophysics, post-graduates, solar physicists and more generally astrophysicists. Amateurs will enjoy the many new images which go with the text.
This book provides a comprehensive treatment of the chemical nature of the Earth's early surface environment and how that led to the origin of life. This includes a detailed discussion of the likely process by which life emerged using as much quantitative information as possible. The emergence of life and the prior surface conditions of the Earth have implications for the evolution of Earth's surface environment over the following 2-2.5 billion years. The last part of the book discusses how these changes took place and the evidence from the geologic record that supports this particular version of early and evolving conditions.
This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid's terrain and nanocrater are reviewed and explained mainly by dimensional analysis. The author discusses perspectives of the relation between soft matter physics and planetary science, because it is an important step towards unifying physics and planetary science, in both of which fields crater morphology has been studied independently.
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvenic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom's law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
The quantity of numbered minor planets is now approaching half a million. Together with this Addendum, the sixth edition of the Dictionary of Minor Planet Names, which is the IAU's official reference for the field, now covers more than 19,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This Addendum to the 6th edition of the Dictionary of Minor Planet Names adds approximately 2200 entries. It also contains many corrections, revisions and updates to the entries published in earlier editions. This work is an abundant source of information for anyone interested in minor planets and who enjoys reading about the people and things minor planets commemorate.
This volume explores the cross-linkages between the kinetic processes and macroscopic phenomena in the solar atmosphere, which are at the heart of our current understanding of the heating of the closed and open corona and the acceleration of the solar wind. The focus lies on novel data, on theoretical models that have observable consequences through remote sensing, and on near-solar and inner-heliosphere observations, such as anticipated by the upcoming Solar Orbiter and Solar Probe missions, which are currently developed by the international community. This volume is aimed at students and researchers active in solar physics and space science. Previously published in Space Science Reviews journal, Vol. 172, Nos. 1-4, 2012.
"The Early Evolution of the Atmospheres of Terrestrial Planets" presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth's transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are living in an epoch of important exoplanet discoveries, but current properties of these exoplanets do not match our scientific predictions using standard terrestrial planet models. This book deals with the main physio-chemical signatures and processes that could be useful to better understand the formation of rocky planets.
Full of personal insights and accounts of the long journey to getting a man on the moon, Missions to the Moon is the perfect companion for anyone with a love of space travel, the moon landings, or NASA, CNSA, RFSA, and the rest of the world's space programs. With dozens of stunning photographs and fascinating memorabilia - such as Apollo 11 Mission Reports and Flight Director's Logs - track the birth of the space race and Yuri Gagarin's first space flight, to the many successes and failures of the Apollo mission, all the way to that boots-on-the-ground moment we have come to know so well. Uniquely complemented by ground-breaking digital technology you can become fully immersed in this interactive story of mankind's ongoing journey into the final frontier.
In September 2011, the GRAIL mission launched two unmanned spacecraft to the Moon, which entered into lunar orbit on December 31, 2011 and January 1, 2012. They orbited the Moon until December 17, 2012, when they impacted the surface near the Moon's north pole. This book contains three review articles co-authored by the GRAIL Science Team and Guest Scientists that describe the reasons for the GRAIL mission, the development of the necessary technology, and the design of the mission to acquire the most precise measurements of the lunar gravity field possible today. The book provides a detailed description of the GRAIL mission's scientific objectives, the instrumentation and its required performance, the complex simulation of the measurement system for determining the gravity field, and the innovative education and public outreach of the mission directed toward middle-school students who could select areas of the Moon for imaging with the onboard MoonKam camera system. This volume is aimed at researchers and graduate students active in solar system science and planetology. Originally published in Space Science Reviews journal, Vol. 178/1, 2013.
This book introduces the theory of stellar atmospheres. Almost everything we know about stars is by analysis of the radiation coming from their atmospheres. Several aspects of astrophysics require accurate atmospheric parameters and abundances. Spectroscopy is one of the most powerful tools at an astronomer’s disposal, allowing the determination of the fundamental parameters of stars: surface temperature, gravity, chemical composition, magnetic field, rotation and turbulence. These can be supplemented by distance measurements or pulsation parameters providing information about stellar interior and stellar evolution, otherwise unavailable. The volume is based on lectures presented at the Wrocław's Spectroscopic School aimed at training young researchers in performing quantitative spectral analysis of low-, mid-, and high-resolution spectra of B, A, and F-type stars.
Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial 'etalon' solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is explained and step by step examples provided, with various digital instruments around the world highlighted based on input from many experienced amateurs who have shared their experience in building and using their spectroheliographs. The final chapters provide a historical overview of the traditional spectroheliograph and the later spectrohelioscope, from the initial G.E.Hale and Deslandres concepts of the 1890's through to the later work by Veio and others. The construction and performance of various instruments is covered in detail, and provides a unique opportunity to record and appreciate the groundbreaking researches carried out by amateurs in the 20th century. This is an absolutely up to date book which fully addresses the watershed, game changing influence of the digital imaging revolution on the traditional spectroheliograph.
This SpringerBrief details the MESSENGER Mission, the findings of which present challenges to widely held conventional views and remaining mysteries surrounding the planet. The work answers the question of why Mercury is so dense, and the implications from geochemical data on its planetary formation. It summarizes imaging and compositional data from the terrestrial planet surface processes and explains the geologic history of Mercury. It also discusses the lack of southern hemisphere coverage. Our understanding of the planet Mercury has been in a transitional phase over the decades since Mariner 10. The influx of new data from the NASA MESSENGER Mission since it was inserted into the orbit of Mercury in March of 2011 has greatly accelerated that shift. The combined compositional data of relatively high volatiles (S, K), relatively low refractories (Al, Ca), and low crustal iron, combined with an active, partially molten iron rich core, has major implications for Mercury and Solar System formation. From a scientist at NASA Goddard Space Flight Center, this presents a comprehensive overview of the discoveries from the ten-year MESSENGER mission.
This book is intended as an introduction to the field of planetary systems at the postgraduate level. It consists of four extensive lectures on Hamiltonian dynamics, celestial mechanics, the structure of extrasolar planetary systems and the formation of planets. As such, this volume is particularly suitable for those who need to understand the substantial connections between these different topics.
th th Mars, the Red Planet, fourth planet from the Sun, forever linked with 19 and 20 Century fantasy of a bellicose, intelligent Martian civilization. The romance and excitement of that fiction remains today, even as technologically sophisticated - botic orbiters, landers, and rovers seek to unveil Mars' secrets; but so far, they have yet to find evidence of life. The aura of excitement, though, is justified for another reason: Mars is a very special place. It is the only planetary surface in the Solar System where humans, once free from the bounds of Earth, might hope to establish habitable, self-sufficient colonies. Endowed with an insatiable drive, focused motivation, and a keen sense of - ploration and adventure, humans will undergo the extremes of physical hardship and danger to push the envelope, to do what has not yet been done. Because of their very nature, there is little doubt that humans will in fact conquer Mars. But even earth-bound extremes, such those experienced by the early polar explorers, may seem like a walk in the park compared to future experiences on Mars.
Astronomer Peter Linde takes the reader through the story of the search for extraterrestrial life in a captivating and thought-provoking way, specifically addressing the new research that is currently devoted towards discovering other planets with life. He discusses the methods used to detect possible signals from other civilizations and the ways that the space sciences are changing as a result of this new field. "Are we alone?" is a mystery that has forever fascinated mankind, gaining momentum by scientists since the 1995 discovery of the existence of exoplanets began to inspire new ways of thinking in astronomy. Here, Linde tries to answer many philosophical questions that derive from this area of research: Is humanity facing a change of paradigm, that we are not unique as intelligent beings? Is it possible to communicate with others out there, and even if we can-should we?
Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the magnetospheres of the outer planets, and cosmic rays at Earth all might yield the first hints of changes in our galactic environment. Twelve articles from leading experts in diverse fields discuss the physical changes expected as the heliosphere adjusts to its galactic environment. Topics include the interaction between the solar wind and interstellar dust and gas, cosmic ray modulation, magnetospheres, temporal variations in the solar environment, and the cosmic ray isotope record preserved in paleoclimate data. The breadth of processes discussed in this book make it a valuable resource for scientists and students doing research in the fields of Space Physics, Astronomy and the Paleoclimate. "I admire the great care that Priscilla Frisch has taken in the editorial work, the balanced subjects, the attractive and clear figures. Also the general topic is well chosen and the various chapters are presented very clearly." - C. de Jager
This book is one of two volumes meant to capture, to the extent practical, the scienti?c legacy of the Cassini-Huygens prime mission, a landmark in the history of planetary exploration. As the most ambitious and interdisciplinary planetary exploration mission ?own to date, it has extended our knowledge of the Saturn system to levels of detail at least an order of magnitude beyond that gained from all previous missions to Saturn. Nestled in the brilliant light of the new and deep understanding of the Saturn planetary system is the shiny nugget that is the spectacularly successful collaboration of individuals, - ganizations and governments in the achievement of Cassini-Huygens. In some ways the pa- nershipsformedandlessonslearnedmaybethemost enduringlegacyofCassini-Huygens.The broad, international coalition that is Cassini-Huygens is now conducting the Cassini Equinox Mission and planning the Cassini Solstice Mission, and in a major expansion of those fruitful efforts, has extended the collaboration to the study of new ?agship missions to both Jupiter and Saturn. Such ventures have and will continue to enrich us all, and evoke a very optimistic vision of the future of international collaboration in planetary exploration. The two volumes in the series Saturn from Cassini-Huygens and Titan from Cassini- Huygens are the direct products of the efforts of over 200 authors and co-authors. Though each book has a different set of three editors, the group of six editors for the two volumes has worked together through every step of the process to ensure that these two volumes are a set.
The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measurements of flattening of the solar surface by SDO showed that the Sun's shape is linked to the rotation of the core. It is shown how such a result is generalizable to the stars.
After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a specialist in celestial mechanics who held a variety of unusual beliefs about the possibility of intelligent life having come from elsewhere. Despite being outliers, their work reveals how much astronomical understanding is still evolving. Unconventional approaches have also pushed our scientific understanding for the better, as with R.W. Mandl's approaching Einstein with regard to gravitational lensing. Even without full substantiation (and some theories are hardly credible), their hypotheses allow for a new perspective on how the Solar System became what it is today.
"An Introduction to Waves and Oscillations in the Sun" is intended for students and researchers who work in the area of solar and astrophysics. This book contains an introduction to the Sun, basics of electrodynamics, magneto-hydrodynamics for force-free and current-free fields. It deals with waves in uniform media with relevance to sound waves and Alfven waves, and with waves in non-uniform media like surface waves or waves in a slab and cylindrical geometry. It also touches on instabilities in fluids and observational signatures of oscillations. Finally, there is an introduction to the area of helio-seismology, which deals with the internal structure of the Sun.
This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
During the last decade, a rapid growth of knowledge in the field of re-entry and planetary entry has resulted in many significant advances useful to the student, engineer and scientist. The purpose of offering this course is to make available to them these recent significant advances in physics and technology. Accordingly, this course is organized into five parts: Part 1, Entry Dynamics, Thermodynamics, Physics and Radiation; Part 2, Entry Abla tion and Heat Transfer; Part 3, Entry Experimentation; Part 4, Entry Concepts and Technology; and Part 5, Advanced Entry Programs. It is written in such a way so that it may easily be adopted by other universities as a textbook for a two semesters senior or graduate course on the sub ject. In addition to the undersigned who served as the course instructor and wrote Chapters, 1, 2, 3 and 4, guest lecturers included: Prof. FRANKLIN K. MOORE who wrote Chapter 5 "Entry Radiative Transfer," Prof. SHIH-I PAI who wrote Chapter 6 "Entry Radiation-Magnetogasdy namics," Dr. CARL GAZLEY, J r. who wrote Chapter 7 "Entry Deaccelera [ion and Mass Change of an Ablating Body," Dr. SINCLAIRE M. SCALA who wrote Chapter 8 "Entry Heat Transfer and Material Response," Mr.
Over the last fifteen years, space-based exploration of the solar system has increased dramatically, with more and more sophisticated orbiters and landers being sent to Mars. This intense period, rich in unprecedented scientific results, has led to immense progress in our perception of Mars and of its evolution over geological time. In parallel, advances in numerical simulations and laboratory experiments also shed new light on the geochemical evolution of the planet Mars. The ISSI-Europlanet Workshop entitled "Quantifying the Martian Geochemical Reservoirs" was held in Bern in April 2011 with the objective to create a diverse interdisciplinary forum composed of scientists directly involved in space-based exploration of the Martian surface, meteoriticists studying SNC meteorites, and planetary and/or Earth scientists simulating, numerically or experimentally, the physical and chemical processes occurring on or within Mars. The chapters of this book provide an overview of current knowledge of the past and present Martian geochemical reservoirs, from the accretionary history to the secondary alteration processes at the surface. In addition to the detailed description of data from Mars and the methods used to obtain them, the contributions also emphasize comparison with features on Earth, providing a perspective on the extent to which our knowledge of terrestrial systems influences interpretation of data from Mars. Areas that would benefit from future work and measurements are also identified, providing a view of the short-term and long-term future of the study of Mars. This collection of chapters constitutes a timely perspective on current knowledge and thinking concerning the geochemical evolution of Mars, providing context and a valuable reference point for even more exciting future discoveries. It is aimed at graduate students and researchers active in geochemistry and space science. Previously published in Space Science Reviews, Vol. 174/1-4, 2013. |
You may like...
Multibody Mechatronic Systems - MuSMe…
Martin Pucheta, Alberto Cardona, …
Hardcover
R6,518
Discovery Miles 65 180
Self-Learning Optimal Control of…
Qinglai Wei, Ruizhuo Song, …
Hardcover
R3,819
Discovery Miles 38 190
Block Backstepping Design of Nonlinear…
Shubhobrata Rudra, Ranjit Kumar Barai, …
Hardcover
R3,285
Discovery Miles 32 850
Dynamics and Control of Advanced…
Valerii P. Matveenko, Michael Krommer, …
Hardcover
R2,661
Discovery Miles 26 610
Dynamics of Crank-Piston Mechanisms
Nodar Davitashvili, Valeh Bakhshaliev
Hardcover
Cable-Driven Parallel Robots…
Marc Gouttefarde, Tobias Bruckmann, …
Hardcover
R6,590
Discovery Miles 65 900
Multibody Mechatronic Systems…
Joao Carlos Mendes Carvalho, Daniel Martins, …
Hardcover
Robust Control of Linear Descriptor…
Yu Feng, Mohamed Yagoubi
Hardcover
R3,678
Discovery Miles 36 780
Proceedings of the 10th International…
Katia Lucchesi Cavalca, Hans Ingo Weber
Hardcover
R5,250
Discovery Miles 52 500
|