![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
The Juno mission to Jupiter is one of the most ambitious, daring and challenging solar system exploration missions ever conceived. Next to the Sun, Jupiter is the largest object in our solar system. As such, it is both a record and driver of the formation and evolution of the planets -- no other object in our solar system can tell us more about the origin of planetary systems. Understanding the details of giant planet formation, structure, composition and powerful magnetospheric environment required a new perspective close up and over the poles of Jupiter -- an orbit never before attempted. Juno was specifically designed for this challenge, entering into the harshest planetary environment known in the solar system. This volume describes the mission design, scientific strategies and instrument payload that enable Juno to peer deep into Jupiter's atmosphere and reveal the fundamental process of the formation and early evolution of our solar system. In these papers, the Juno instrument teams describe their investigations, which include gravity radio science, microwave radiometers, magnetometers, an infrared imager auroral mapper, an ultraviolet imager and spectrograph, a visible light imager known as JunoCam, low and high energy particle detectors and plasma wave and radio electromagnetic sensors. The articles also describe a radiation monitoring experiment and the extensive laboratory measurements undertaken to assist with the analysis and interpretation of Juno's pioneering investigation of Jupiter's deep atmosphere. Originally published in Space Science Reviews, Volume 213, Issue 1-4, November 2017
Examines each of these parameters in crucial depth and makes the argument that life forms we would recognize may be more common in our solar system than many assume. Considers exotic forms of life that would not have to rely on carbon as the basic chemical element, solar energy as the main energy source, or water as the primary solvent and the question of detecting bio- and geosignatures of such life forms, ranging from earth environments to deep space. Seeks an operational definition of life and investigate the realm of possibilities that nature offers to realize this very special state of matter. Avoids scientific jargon wherever possible to make this intrinsically interdisciplinary subject understandable to a broad range of readers.
In 1965 the International Union of the History and Philosophy of Science founded the Nicolas Copernicus Committee whose main task was to explore the means by th which different nations could co-operate in celebrating the 5 centenary of the great scholar's birth. The committee initiated the publication of a collection of studies dealing with the effect that Copernicus' theory has had on scientific developments in centres of learning all over the world. An Editorial Board, consisting of J. Dobrzycki (Warsaw), J. R. Ravetz (Leeds), H. Sandblad (Goteborg) and B. Sticker (Hamburg), was nominated. We found that our initiative aroused a lively interest among Copernicus scholars; the present volume, with 11 articles by authors from nine American, Asian and European countries, contains the result of their research. It appears in the series 'Studia Coper nicana' by agreement with the Polish Academy of Science, and we hope to publish a number of other contributions in a subsequent volume. We are happy to say that our efforts have been fruitful and that this volume presents not only several in-depth studies, but also a more general survey of the rules governing the evolution of science, rules set within the framework of Copernicus' theory as it developed among various nations and in various scientific institutions over the centuries. It has been shown once again that, 500 years after his birth, the work of Copernicus remains a source of scientific interest and continues to stimulate fresh study and research."
"The Early Evolution of the Atmospheres of Terrestrial Planets" presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth's transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are living in an epoch of important exoplanet discoveries, but current properties of these exoplanets do not match our scientific predictions using standard terrestrial planet models. This book deals with the main physio-chemical signatures and processes that could be useful to better understand the formation of rocky planets.
This book presents a global and synthetic vision of planetology - the study of objects in the Solar System. In the past several decades, planetology has undergone a real revolution, marked in particular by the discovery of the Kuiper belt beyond Neptune, the discovery of extrasolar planets, and also by the space exploration of ever more distant objects. Today, it is at the crossroads of many disciplines: astronomy, geophysics, geochemistry and biology. The Solar System 1 deals with the Solar System as a whole, offering a general presentation of the objects that compose it and its place in the galaxy. It also deals with planetary systems, exoplanets and the interaction of Solar System objects with interplanetary medium. Finally, it analyzes the telluric and giant planets.
Every rock has a story tell, and none more so than those which have fallen from the sky: meteorites. Originating in the Asteroid Belt between Mars and Jupiter, these rocky fragments offer clues not just to the earliest origins of the Solar System but also to Earth's very survival into the future. Sky at Night presenter, Dr Tim Gregory takes us on a journey through the very earliest days of our Solar System to the spectacular meteorite falls that produced 'fiery rain' in 1792, to the pre-solar grains (literally stardust) that were blown in from other solar systems and are the oldest solid objects ever discovered on earth. Meteorites reveal a story much bigger than ourselves or our planet. As Tim says, 'it is an epic beyond compare'.
This book presents pioneering work on a critical observational test of the planet formation theory based on the theoretical study of the water snowline, beyond which water takes the form of ice, in the protoplanetary disks - the place where planets are formed. Since the water snowline is thought to divide the regions of rocky and gas-giant planet formation, the location of the snowline is essential for the planet formation process. The book proposes a novel method to locate the snowlines using high-dispersion spectroscopic observations of water vapor lines, which is based on in sophisticated chemical modeling and line radiative transfer calculations. The author obtained the water vapor distribution in the disks using the chemical reaction network, which includes photoreactions and gas-grain interactions. The simulated transition lines of water vapor in the disks demonstrate that relatively weak transition lines with moderate excitation energies are the best tracers of water snowline. Furthermore, the author observed submillimeter lines of water vapor in a disk using ALMA (Atacama Large Millimeter/submillimeter Array) to obtain the upper limit of the line fluxes with the highest sensitivity to date. These unprecedented findings are important in locating the snowlines in the disks, and the method goes a long way toward achieving a comprehensive understanding of the planet formation processes as well as of the origin of water on rocky planets, including our Earth, based on future observations using ALMA and SPICA (Space Infrared Telescope for Cosmology and Astrophysics).
These are the proceedings of a meeting celebrating Michael Thompson's seminal work on solar and stellar physics, as well as his major contributions to the development of the National Center for Atmospheric Research. The meeting also marked Michael J. Thompson's untimely death in October 2018. Michael played a key role in the development of helioseismology and its application to the study of the structure and dynamics of the solar interior, and he provided a strong foundation for the extension of seismic studies for other stars. After focusing for several years on more administrative activities, he was returning to leading the seismic studies of solar interior rotation and he was deeply involved in the understanding of the dynamics of the core of stars, when his life was tragically lost. The conference focused on dynamical aspects of the sun and stars, based on the large amount of data available on solar and stellar oscillations, and the extensive and detailed modelling now becoming feasible. Combining observations, seismic analysis, and modelling the meeting and this book serve as a fitting memorial to a close colleague and friend, much missed.
The inner magnetosphere plasma is a very unique composition of different plasma particles and waves. It covers a huge energy plasma range with spatial and time variations of many orders of magnitude. In such a situation, the kinetic approach is the key element, and the starting point of the theoretical description of this plasma phenomena which requires a dedicated book to this particular area of research.
The millimeter and sub-millimeter wavebands are unique in astronomy in containing several thousands of spectral lines of molecules as well as the thermal continuum spectrum of cold dust. They are the only bands in the electromagnetic spectrum in which we can detect the molecular gas reservoir for star formation and cold dust far away in high-redshift galaxies, and nearby in low-temperature cocoons of protostars and protoplanets. This book is based on and extensively updated from the lectures given during the Saas-Fee Advanced Course 38 on millimeter astronomy. It presents both the observing techniques and the scientific perspectives of observations at millimeter wavelengths, here in particular the star and planet formation. The chapters by Thomas L. Wilson and Stephane Guilloteau have been edited by Miroslava Dessauges-Zavadsky and Daniel Pfenniger. The book is part of the series of Saas-Fee Advanced Courses published since 1971. The targeted audience are graduate PhD and advanced undergraduate students, but the book also serves as reference for post-doctoral researchers or newcomers to the field.
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
This book investigates the mineralogy and shock effects of Yanzhuang chondrite, using modern micro-mineralogical experimental techniques, including SEM, TEM, EPMA, Raman microprobe spectroscopy, instrumental neutron activation analysis, X-ray micro-diffraction analysis, micro-PIXE analysis and laser ablation ICP-MS. The micro-structural and micro-morphological characteristics as well as chemical composition of minerals were studied in details. Based on the studies in the shock effects of rocks and minerals, and the detailed study in the shock-produced melt, the book concludes that Yanzhuang chondrite is the most heavily shocked ordinary H group chondrite ever found and that it contains the most abundant shock induced melt among all known shock-melt-bearing chondritic meteorites.
This book provides a detailed, state-of-the-art overview of key observational and theoretical aspects of the rapidly developing and highly interdisciplinary field of exoplanet science, as viewed through the lenses of eight world-class experts. It equips readers with a broad understanding of the complex processes driving the formation and the physical and dynamical evolution of planetary systems. It juxtaposes theoretical modeling with the host of techniques that are unveiling the exceptional variety of observed properties of close-in and wide-separation extrasolar planets. By effectively linking ingenious interpretative analyses to the main factors shaping planetary populations, the book ultimately provides the most coherent picture to date of the demographics of exoplanetary systems. It is an essential reference for Ph.D. students and early-stage career researchers, while the scope and depth of its source material also provide excellent cues for graduate-level courses.
Dawn is the first mission to orbit a main belt asteroid and the
first scientific mission to use ion propulsion. Major objectives of
this mission include mapping of the surfaces of 4 Vesta and 1
Ceres, determining its topography from stereo measurements,
determining its mineralogy, measuring its elemental composition and
obtaining gravity data. This book describes the Dawn mission, its
exploration and scientific objectives, the instruments that
accomplish those objectives, the operations plan and the education
and outreach plan. It is directed to those studying asteroids and
the evolution of the solar system.
The articles in this volume cover, for the first time, all aspects of planetary magnetism, from the observations made by space missions to their interpretation in terms of the properties of all the planets in the solar system. Studies of dynamo-generated magnetic fields in Mercury, the Earth, the giant planets, as well as in Ganymede, one of Jupiter's moons, are presented. Crustal magnetic field in Mars, the Mon and the Earth are described as well as magnetic fields induced in the solar system bodies. There are several articles dealing with dynamo theory and modelling and applications to the different planets.
The sun radiates a tremendous amount of energy, called solar energy or solar radiation, which is the main natural source of energy on the Earth, by far. Because solar radiation is the almost unique supplier of energy to the Earth, it has a primary influence on life and activities on the Earth. The climate is a first example, but there are many others, such as plant growth or human health, or even the design of buildings, the production of energy, notably electrical and thermal, or even aging materials. This book aims to provide simple answers to anyone who has questions about solar radiation. Its ambition is to help by presenting the fundamental elements of the solar radiation received on the ground. The book includes many examples and numerous illustrations, as well as some simple but fairly precise equations to calculate the various elements covered and to reproduce the figures and graphs. The first of the three parts of this book is devoted to the relative geometry between the direction of the sun and an observer on the ground as well as to the solar radiation emitted by the sun and received at the top of the atmosphere. The orbit of the Earth around the sun and the solar declination are described. The concept of time is introduced which is closely linked to the solar cycle and the rotation of the Earth on itself. Equations are given to calculate the solar radiation received on a horizontal or inclined surface located at the top of the atmosphere. The spectral distribution of the extraterrestrial solar radiation is described. The second part of this book addresses how the solar radiation incident at the top of the atmosphere is attenuated and modified in its downward path to the ground. The reflection of the radiation by the ground is presented. The solar radiation received on the ground by a horizontal or inclined collector plane, such as a natural slope or a rooftop, is discussed, as well as its spectral distribution. The variability of the radiation is addressed in relation to the properties of solar radiation estimated from the measurements. The third part deals with direct or indirect measurements of the solar radiation received on the ground over a given integration time (minute, hour, day, or month), whether for total radiation or radiation in a spectral range such as ultraviolet (UV), or daylight, or photosynthetically active radiation (PAR). It also explains how to check the plausibility of the measurements. Fundamentals of Solar Radiation will be a valuable resource to all professionals, engineers, researchers, students, and other practitioners that seek an understanding of solar radiation.
This book provides the latest scientific understanding of the Sun, sharing insights gleaned from the international solar physics project Hinode. The authors (who are the main project contributors) review, from the various viewpoints, the discoveries and advances made by the on-orbit operations of the Hinode spacecraft in its first decade. Further, they present a wealth of scientifically important photographs and data from Hinode. Launched in September 2006, Hinode is the third Japanese solar observatory on orbit, and employs three highly advanced telescopes jointly developed and operated with international partners. The book describes the background of these research topics, how the Hinode telescopes have tackled various challenges, and the scientific achievements and impacts in the first 10 years. Furthermore, it explores future perspective of researches in Japan. The book will benefit undergraduate students interested in recent advance in the solar research, as well as graduate students and researchers working in solar physics, the space sciences, astronomy, and plasma physics.
This Symposium, the first devoted entirely to the measurement and the role of magnetic fields in the non-solar Universe, was held in Heidelberg, on June 19-23, 1989. The meeting began with review talks on magnetic phenomena near the solar photosphere, corona, and in stellar winds, since these nearby "laboratories," studied for many years, provide much of the prior knowl edge of magnetic effects in astrophysical plasmas. The Symposium contained presentations of considerable new work concerning the role of magnetic fields in accretion disks, bipolar outflows, and related magnetic phenomena in molecular clouds and star forming regions. Both observa tions and related theory of the large-scale magnetic fields in the Milky Way were covered, in addition to a session on the more general theme of magnetohydrodynamics of galactic magnetic fields. Dynamo mechanisms were discussed in considerable detail. It was apparent that recent observational data on polarized emission from external galaxies are now of sufficiently high quality that meaningful tests of large-scale field amplification, and of ideas on the origin of galactic magnetic fields, can be undertaken. Both new observations and numerical simulation work were described in the context of active galaxy nuclei, supernova remnants, radio source jets and extended lobes, and also in the environment of galaxy clusters. Recent large-scale computer simulations incorporating magnetic fields in star formation, radio source jets, and many other phenomena were presented, and much of this was very new."
This is an account of the many ways in which the Sun affects our planet, how its influence has changed over the last few centuries and millennia, and the extent to which we can predict its future impact. The book is the first to integrate astronomical, geological, climatic and social aspects of the Sun. It includes a topical treatment of solar contribution to global warming, and demonstrates how wild and variable is the so-called Solar Constant. Our nearest star is a complex machine which needs to be treated with caution, and this book will equip every reader with the knowledge that is required to understand the benefits and dangers it can bring.
This open access book provides a comprehensive toolbox of analysis techniques for ionospheric multi-satellite missions. The immediate need for this volume was motivated by the ongoing ESA Swarm satellite mission, but the tools that are described are general and can be used for any future ionospheric multi-satellite mission with comparable instrumentation. In addition to researching the immediate plasma environment and its coupling to other regions, such a mission aims to study the Earth's main magnetic field and its anomalies caused by core, mantle, or crustal sources. The parameters for carrying out this kind of work are examined in these chapters. Besides currents, electric fields, and plasma convection, these parameters include ionospheric conductance, Joule heating, neutral gas densities, and neutral winds.
|
You may like...
OpenStreetMap in GIScience…
Jamal Jokar Arsanjani, Alexander Zipf, …
Hardcover
Land Reclamation and Restoration…
Gouri Sankar Bhunia, Uday Chatterjee, …
Paperback
R3,021
Discovery Miles 30 210
Is Your Thinking Keeping You Poor? - 50…
Douglas Kruger
Paperback
(4)
Practical Oracle Database Appliance
Bobby Curtis, Yury Velikanov, …
Paperback
R2,254
Discovery Miles 22 540
Advances in Earth Observation of Global…
Emilio Chuvieco, Jonathan Li, …
Hardcover
R2,692
Discovery Miles 26 920
Extreme Hydroclimatic Events and…
Viviana Maggioni, Christian Massari
Paperback
R3,500
Discovery Miles 35 000
Spatial Analysis Techniques Using…
Joao Garrott Marques Negreiros
Hardcover
R5,559
Discovery Miles 55 590
|