![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
Continuum radio emission and fine structure (in particular millisecond spikes) have recently raised interest as diagnostic tools for the interpretation of energy release and particle acceleration in flares. In the circles of the European solar radio astronomers, loosely organized in CESRA, the idea of a workshop came up intended for active observers of the impulsive phase of flares in radio and associated emissions. The scientific organizing committee included A.D. Benz (chairman), A. Magun, M. Pick, G. Trottet, and P. Zlobec. The workshop was held on May 27-31, 1985 in the castle of Duino near Trieste, Italy. The meeting intended to find a common terminology, to compare radio observations with measurements in other emissions and to confront observations with theoretical concepts. We have achieved a representative summary on the current status of the field and a clear perspective for the next cycle. This volume contains the reviews and a selection of contributions and extended abstracts of papers presented at the workshop. I wish to thank the local organizers, in particular A. Abrami, M. Comari, F. Depolli, L. Fornasari, M. Messerotti (chairman), M. Nonino, and P. Zlobec. Financial support was graciously provided by the Italian Research Council (CNR). Most of all, however, I would like to express my thankfulness to our host, His Highness Prince Raimondo della Torre e Tasso, for his invaluable hospitality. We are deeply sorry to hear of his passing in the meantime. To his memory these proceedings are dedicated.
The Mars Science Laboratory is the latest and most advanced NASA roving vehicle to explore the surface of Mars. The Curiosity rover has landed in Gale crater and will explore this region assessing conditions on the surface that might be hospitable to life and paving the way for later even more sophisticated exploration of the surface. This book describes the mission, its exploration and scientific objectives, studies leading to the design of the mission and the instruments that accomplish the objectives of the mission. This book is aimed at all those engaged in Martian studies as well as those interested in the origin of life in other environments. It will be a valuable reference for anyone who uses data from the Mars Science Laboratory. Previously published in Space Science Reviews journal, Vol. 170/1-4, 2012.
The present century has been a disappointing one for comets, but past centuries often featured spectacular, unforgettable comet shows that dominated the night (and even daytime) sky for months: comets that outshone Venus or even the Moon, whose spectacular tails stretched more than halfway across the sky or were weirdly split, and whose apparition was held responsible for everything from wars to unusually good wine vintages. Published to coincide with the first naked-eye appearance of Comet Hale-Bopp, perhaps our own "comet of the century", this book is a guide to comet facts and lore throughout history.
Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which they formed and the depth of the magma source regions below the lunar surface.
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. This volume, the fourth in the Heliophysics collection, explores what makes the conditions on Earth 'just right' to sustain life, by comparing Earth to other solar system planets, by comparing solar magnetic activity to that of other stars, and by looking at the properties of evolving exoplanet systems. By taking an interdisciplinary approach and using comparative heliophysics, the authors illustrate how we can learn about our local cosmos by looking beyond it, and in doing so, also enable the converse. Supplementary online resources are provided, including lecture presentations, problem sets and exercise labs, making this ideal as a textbook for advanced undergraduate- and graduate-level courses, as well as a foundational reference for researchers in the many subdisciplines of helio- and astrophysics.
Two models for the origin of the Solar System, the Nebula Theory and the Capture Theory, are discussed by protagonists, Simon and Steven respectively, in the presence of Solomon, who oversees the discussions. Modelled on Galileo's Dialogue Concerning the Two Chief World Systems, this book provides new insight into different theories of cosmogony.The Nebula Theory, at present the standard model of planet formation, proposes that a star and planets are derived from a single spinning nebula. Woolfson here introduces an alternative, the Capture Theory, in which planets are produced from a protostar tidally disrupted by a condensed star which 'captures' most of the formed planets into orbits. These complex ideas are simplified and presented in an easily understandable, accessible way for all students of physics, astronomy, cosmology and those interested in the beginning of our world as we know it.
This book is an original study aimed at understanding how vacuum magnetic fields change with time. Specifically, it describes the waves that radiate from a sphere when the electric current on its surface is turned on or off, either suddenly, gradually, or periodically. Numerical simulations are an invaluable source of information about this and related subjects, but they are often more difficult to interpret than exact, closed-form solutions that can easily be applied to a variety of situations. Thus, the objective here is to obtain an exact solution of Maxwell's equations in closed form-something simple, yet rigorous, which can be used as a model for understanding transient magnetic fields in more complicated situations. The work therefore stands as a self-contained solution of Maxwell's equations for an electric current wrapped around the surface of a sphere. This study assumes a strong background in electromagnetism or a related research area. Online animations are available for each figure to better illustrate the motions of magnetic field lines.
This book focuses on the most recent, relevant, comprehensive and significant aspects in the well-established multidisciplinary field Laboratory Astrophysics. It focuses on astrophysical environments, which include asteroids, comets, the interstellar medium, and circumstellar and circumplanetary regions. Its scope lies between physics and chemistry, since it explores physical properties of the gas, ice, and dust present in those systems, as well as chemical reactions occurring in the gas phase, the bare dust surface, or in the ice bulk and its surface. Each chapter provides the necessary mathematical background to understand the subject, followed by a case study of the corresponding system. The book provides adequate material to help interpret the observations, or the computer models of astrophysical environments. It introduces and describes the use of spectroscopic tools for laboratory astrophysics. This book is mainly addressed to PhD graduates working in this field or observers and modelers searching for information on ice and dust processes.
The book begins at the Sun then travels through the solar system to see the stars, how they work, and ultimately what they mean to us. The idea is to provide an integrated view of the galaxy and its contents. Along the way we look at spectra, atmospheric phenomena, gravity and the laws of motion, telescopes and how they work, interstellar gas and dust, star birth and death, and planets orbiting other stars. Most popular books tend to focus on one particular topic. From the Sun to the Stars is one of the few that tells the story of the Sun against the background of other stars and other planets and, for that matter, of stars and other planets against the background of the Sun and solar system. This presents the subject with a breadth that few other books can match.This book grew out of the OLLI (Osher Lifelong Learning Institute) lectures given by the author at the University of Illinois. It doesn't require any prior knowledge and is suitable for anyone who is interested in astronomy.
The book begins at the Sun then travels through the solar system to see the stars, how they work, and ultimately what they mean to us. The idea is to provide an integrated view of the galaxy and its contents. Along the way we look at spectra, atmospheric phenomena, gravity and the laws of motion, telescopes and how they work, interstellar gas and dust, star birth and death, and planets orbiting other stars. Most popular books tend to focus on one particular topic. From the Sun to the Stars is one of the few that tells the story of the Sun against the background of other stars and other planets and, for that matter, of stars and other planets against the background of the Sun and solar system. This presents the subject with a breadth that few other books can match.This book grew out of the OLLI (Osher Lifelong Learning Institute) lectures given by the author at the University of Illinois. It doesn't require any prior knowledge and is suitable for anyone who is interested in astronomy.
Astronomy was a popular and important part of Victorian science,
and British astronomers carried telescopes and spectroscopes to
remote areas of India, the Great Plains of North America, and
islands in the Caribbean and Pacific to watch the sun eclipsed by
the moon. Examining the rich interplay between science, culture,
and British imperial society in the late nineteenth century, this
book shows how the organization and conduct of scientific fieldwork
was structured by contemporary politics and culture, and how rapid
and profound changes in the organization of science, advances in
photography, and new printing technology remade the character of
scientific observation.
This Is Mars offers a thrilling visual experience of the surface of the red planet. The multi-award-winning French editor and designer Xavier Barral has chosen and composed photographic frames, drawn from the comprehensive photographic map of Mars made by the U.S. observation satellite MRO (Mars Reconnaissance Orbiter), to revel in the wonder of Mars. What Yann Arthus-Bertrand did with a light aircraft for The Earth from the Air , Barral does for Mars-by scouring tens of thousands of gigabytes of satellite photographs available from NASA, seeking out the most distinct images of the planet's surface. The result is visionary-a great science book, a unique artist's book, and a stunning object. The photographs are accompanied by an introduction from research scientist Alfred S. McEwen, principle investigator of the HiRISE telescope; an essay by astrophysicist Francis Rocard, who explains the story of Mars's origins and its evolution; and a timeline by geophysicist Nicolas Mangold, who demystifies some of Mars's geological history. Now available as a mid-sized, accessibly priced edition, This Is Mars will excite lovers of great photobooks, and everyone curious about the universe and beyond.
A decade of observations of the Sun with NASA's Solar Maximum Mission satellite has led to many discoveries in solar physics and atomic physics. While the analysis of the data is still continuing, a huge body of literature has now been published interpreting results from the mission. This book collects a review of these results in a single volume to provide a snapshot, as it were, of the current state of knowledge of solar physics. It will thus be a useful tool for both teaching and research, as well as a guide to planners of future missions to investigate the Sun. Individual chapters, each written by an expert in solar physics, cover such topics as: z Variations in the solar irradiance z Active regions of the Sun z The corona: elemental abundances; coronal mass ejections z Chromospheric evaporation z Solar flares; ultraviolet flares; nonthermal flare emissions z Flare dynamics; preflare activity; the gradual phase of flares; particle acceleration in flares z Spectroscopy and atomic physics z Solar-terrestrial science z The solar-stellar connection z Comet observations z Cosmic studies
The Magnetosheath and Magnetotail of Venus.- The Structure of the Venus Ionosphere.- Ion Dynamics in the Venus Ionosphere.- Magnetic Fields in the Ionosphere of Venus.- Plasma Waves at Venus.- Venus Lightning.- The Structure, Luminosity and Dynamics of the Venus Atmosphere.
This book is dedicated to the nascent discussion of the legal aspects of human exploration and possible settlement of Mars, and provides fresh insights and new ideas in two key areas. The first one revolves around the broader aspects of current space law, such as intellectual property rights in outer space, the legal implications of contact with extra-terrestrial intelligence, legal considerations around the freedom of exploration and use, and the International Space Station agreement as a precedent for Mars. The second one focuses on the creation and management of a new society on Mars, and includes topics such as human reproduction and childbirth, the protection of human rights in privately-funded settlements, legal aspects of a Martian power grid, and criminal justice on the red planet. With multiple national space agencies and commercial enterprises focusing on Mars, it is more than likely that a human presence will be established on the red planet in the coming decades. While the foundation of international space law, laid primarily by the Outer Space Treaty, remains the framework within which humans will engage with Mars, new and unforeseen challenges have arisen, driven particularly by the rapid pace of technological advancement in recent years. To ensure that space law can keep up with these developments, a new scholarly work such as the present one is critical. By bringing together a number of fresh international perspectives on the topic, the book is of interest to all scholars and professionals working in the space field.
Today many scientists recognize plasma as the key element in understanding new observations in interplanetary and interstellar space, in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Plasma astrophysics and cosmology, as a unified discipline, cover topics such as the large-scale structure and filamentation of the universe; the microwave background; the formation of galaxies and magnetic fields; active galactic nuclei and quasars; the origin and abundance of light elements; star formation and the evolution of solar systems; redshift periodicities and anomalous redshifts; general relativity; electric fields; the acceleration of charged particles to high energies; and cosmic rays. This text provides an update on the observations made in radio, optical and high-energy astrophysics, especially since 1985, and addresses the paradigm changing discoveries made by the planetary probes and satellites, radio telescopes, and the Hubble space telescope. Over 20 contributors, all distinguished plasma scientists, present a picture of the nature of our plasma universe with articles ranging from the popular level to advanced topics in plasma cosmology.
Short Historical Overview In the 1940s, two phenomena in the ?eld of cosmic rays (CR) forced scientists to think that the Sun is a powerful source of high-energy particles. One of these was discovered because of the daily solar variation of CR, which the maximum number of CR observed near noon (referring to the existence of continuous ?ux of CR from the direction of the Sun); this became the experimental basis of the theory that CR's originate from the Sun (or, for that matter, from within the solar system) (Alfven 1954). The second phenomenon was discovered when large ?uxes of high energy particles were detected from several solar ?ares, or solar CR. These are the - called ground level events (GLE), and were ?rst observed by ionization chambers shielded by 10 cm Pb (and detected mainly from the secondary muon-component CR that they caused) during the events of the 28th of February 1942, the 7th of March 1942, the 25th of July 1946, and the 19th of November 1949. The biggest such event was detected on the 23rd of February 1956 (see the detailed description in Chapters X and XI of Dorman, M1957). The ?rst phenomenon was investigated in detail in Dorman (M1957), by ?rst correcting experimental data on muon temperature effects and then by using coupling functions to determine the change in particle energy caused by the solar-diurnal CR variation."
Double and multiple stars are the rule in the stellar population, and single stars the minority, as the abundance of binary systems in the space surrounding the sun shows beyond doubt. Numerous stellar features, and methods of their exploration, ensue specifically from the one but widespread property, the binary nature. Stellar masses are basic quantities for the theory of stellar structure and evolution, and they are ob tained from binary-star orbits where they depend on the cube of observed parameters; this fact illustrates the significance of orbits as well as the accuracy requirements. Useful in dating stellar history is the knowledge that components of a system, different though they may appear, are of the same origin and age. Between star formation and the genesis of binaries a direct connection can be traced. The later stages of stellar life branch into a great variety as mutual influence between the components of a close binary pair develops. Transfer and exchange of mass and the presence of angular momentum in the orbit give rise to special tracks of evolution, not found for single stars, and to peculiar spectral groups. This is not a new story but it has a new ending: The patterns of evolution involving mass transfer appear to lead ultimately to single objects."
Measurements of solar irradiance, both bolometric and at various wavelengths, over the last two decades have established conclusively that the solar energy flux varies on a wide range of time scales, from minutes to the 11-year solar cycle. The major question is how the solar variability influences the terrestrial climate. The Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) is an international research program operating under the auspices of the Solar-Terrestrial Energy Program (STEP) Working Group 1: The Sun as a Source of Energy and Disturbances'. STEP is sponsored by the Scientific Committee of Solar-Terrestrial Physics (SCOSTEP) of the International Council of Scientific Unions (ICSU). The main goal of the SOLERS22 1996 Workshop was to bring the international research community together to review the most recent results obtained from observations, theoretical interpretation, empirical and physical models of the variations in the solar energy flux and their possible impact on climate studies. These questions are essential for researchers and graduate students in solar-terrestrial physics.
This symposium was devoted to the so-called minor bodies in the Solar System, and their mutual interrelationships. Asteroids, comets and meteors provide essential information on the history of the Solar System, starting with the early phases of planetary formation, until the present epoch. Different evolutionary processes have shaped the physical characteristics of the populations of minor bodies. Among them, collisional phenomena have played an essential role, as has been generally recognized by modern planetary research. This symposium was one step in the effort to sketch a general unifying scenario of the properties of the different populations of minor bodies, which are generally studied by separate scientific communities. In particular, the most recent findings on the interrelationships between asteroids, comets and meteoroids suggest that an interdisciplinary approach should be preferred. Only in this way can the properties of different populations of minor bodies be interpreted in the framework of a coherent picture of the history and evolution of the Solar System.
This fully-updated second edition remains the only truly detailed exploration of the origins of our Solar System, written by an authority in the field. Unlike other authors, Michael Woolfson focuses on the formation of the solar system, engaging the reader in an intelligent yet accessible discussion of the development of ideas about how the Solar System formed from ancient times to the present.Within the last five decades new observations and new theoretical advances have transformed the way scientists think about the problem of finding a plausible theory. Spacecraft and landers have explored the planets of the Solar System, observations have been made of Solar-System bodies outside the region of the planets and planets have been detected and observed around many solar-type stars. This new edition brings in the most recent discoveries, including the establishment of dwarf planets and challenges to the 'standard model' of planet formation - the Solar Nebula Theory.While presenting the most up-to-date material and the underlying science of the theories described, the book avoids technical jargon and terminology. It thus remains a digestible read for the non-expert interested reader, whilst being detailed and comprehensive enough to be used as an undergraduate physics and astronomy textbook, where the formation of the solar system is a key part of the course.Michael Woolfson is Emeritus Professor of Theoretical Physics at University of York and is an award-winning crystallographer and astronomer.
This fully-updated second edition remains the only truly detailed exploration of the origins of our Solar System, written by an authority in the field. Unlike other authors, Michael Woolfson focuses on the formation of the solar system, engaging the reader in an intelligent yet accessible discussion of the development of ideas about how the Solar System formed from ancient times to the present.Within the last five decades new observations and new theoretical advances have transformed the way scientists think about the problem of finding a plausible theory. Spacecraft and landers have explored the planets of the Solar System, observations have been made of Solar-System bodies outside the region of the planets and planets have been detected and observed around many solar-type stars. This new edition brings in the most recent discoveries, including the establishment of dwarf planets and challenges to the 'standard model' of planet formation - the Solar Nebula Theory.While presenting the most up-to-date material and the underlying science of the theories described, the book avoids technical jargon and terminology. It thus remains a digestible read for the non-expert interested reader, whilst being detailed and comprehensive enough to be used as an undergraduate physics and astronomy textbook, where the formation of the solar system is a key part of the course.Michael Woolfson is Emeritus Professor of Theoretical Physics at University of York and is an award-winning crystallographer and astronomer.
What is a planet? The answer may seem obvious; still, the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. In 2006, the decision endorsed by the International Astronomical Union to remove Pluto from the list of planets has well illustrated the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge on solar system planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout, we keep in mind the ultimate question of the search for possible extraterrestrial life: Could life exist or have existed in the solar system and beyond?Therese Encrenaz is Emeritus Senior Scientist at the Centre National de la Recherche Scientifique. She works at the Observatoire de Paris, at the Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA). She is a specialist of the study of planetary atmospheres, and has been involved in several space missions.
Eleven planetary atmospheres are included for detailed study in this reference/text, four for the giant planets (Jupiter, Saturn, Uranus, and Neptune), four for the small bodies (Io, Titan, Triton, and Pluto), and three for the terrestrial planets (Mars, Venus, and Earth). The authors have carried out a comprehensive survey of the principal chemical cycles that control the present composition and past history of planetary atmospheres, using the database provided by recent spacecraft missions supplemented by Earth-based observations.
This textbook is intended to be used in a lecture course for college students majoring in Earth Sciences. Planetary science provides an opportunity for these students to apply a wide range of subject matter pertaining to the Earth to the study of other planets and their principal satellites. In this way, planetary science tends to unify subjects in the Earth Sciences that are traditionally taught separately. Therefore, planetary science is well-suited to be taught as a capstone course for senior undergraduates in geology departments and as an introduction to the solar system in astronomy departments. Both groups of students will benefit because planetary science bridges the gap between geology and astronomy and it prepares geologists and astronomers to participate actively in the on-going exploration of the solar system. |
You may like...
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Lunar Reconnaissance Orbiter Mission
R R Vondrak, J W Keller
Hardcover
R4,720
Discovery Miles 47 200
|