![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science
This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.
Race to the Moon is a suspenseful thriller about the 30-year clash between the United States and the Soviet Union to be the first to put a man on the moon. This true account is heavy with intrigue, espionage, and controversy. Beginning with a 1961 pledge by President John F. Kennedy to plant the Stars and Stripes on the lunar surface by the end of the decade, the story flashes back to the first days of World War II. At that time, England was tipped off by a high Nazi official that the Third Reich was developing revolutionary long-range rockets. This same source clandestinely provided documents that shocked British scientists: The Germans were 25 years ahead of England and the United States in rocket development! And then, in September 1944, 60-foot-long V-2 rockets, for which there was no defense, began raining down on London, causing enormous destruction and loss of life. Even while the fighting was still raging in Germany in the spring of 1945, a handful of young U.S. Army officers scored a colossal coup: They connived to steal 100 of the huge V-2s that had been found in an underground factory. They were dismantled and slipped by train out of Germany, destination White Sands, New Mexico. Then began a no-holds-barred search for German rocket scientists in the chaos of a defeated Third Reich, with the Americans and British on one side and the Russians on the other. Within weeks of the close of the war, Wernher von Braun and 126 of his rocket team members were corraled, shipped to the United States, and began working secretly on missile development. At the same time, the Soviets literally kidnapped other German rocket scientists and sent them to Russia to continue their space work. In the years ahead, Wernher von Braun and his German rocket team, nearly all of whom became naturalized citizens of the United States, collaborated with American scientists to overcome enormous space achievements by the Soviets--and bungling by Washington politicians--to send Neil Armstrong scampering about on the moon in 1969.
Presents a comprehensive synopsis of the current state of cosmic rays, their modulation and their effects in the Earth's atmosphere. Leading scientists in the field assess the current state of our understanding of the spatial and temporal variations of galactic and anomalous cosmic rays in the Heliosphere, and their relation to effects of the Sun. The main objective is to understand the spatial and temporal variation of galactic and anomalous cosmic rays in the light of recent observations, theory and modeling by identifying the key mechanism(s) of cosmic ray modulation and how changes on the Sun relate to changes in the observed characteristics of cosmic rays in the Heliosphere; examining the current long-lasting solar minimum and understand its implications for solar-cycle variations and long-term variations; and interpreting the long-term variations of cosmogenic radionuclides in terms of solar variability and climate change on Earth. This volume is aimed at graduate students active in the fields of solar physics, space science, and cosmic ray physics. Originally published in Space Science Reviews journal, Vol. 176/1-4, 2013.
A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun. This phenomenon is the generation and evolution of magnetic fields in the Sun's convection zone, the photosphere. It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences. The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers. This book deals with this topic, together with several others that present related phenomena that all indicate the physical processes that take place in the Sun and its exterior environment. The reviews in the book also present the latest theoretical and modelling studies that attempt to explain the activity cycle. It remains true, as has been shown in the unexpected characteristics of the first two solar cycles in the 21st century, that predictability remains a serious challenge. Nevertheless, the highly expert and detailed reviews in this book, using the very best solar observations from both ground- and space based telescopes, provide the best possible report on what is known and what is yet to be discovered. Originally published in Space Science Reviews, Vol 186, Issues 1-4, 2014.
The story of the people who designed, built, launched, landed, and
are now operating the Mars rover "Curiosity"
This book presents selected papers of the Itzhack Y. Bar-Itzhack Memorial Sympo- sium on Estimation, Navigation, and Spacecraft Control. Itzhack Y. Bar-Itzhack, professor Emeritus of Aerospace Engineering at the Technion - Israel Institute of Technology, was a prominent and world-renowned member of the applied estimation, navigation, and spacecraft attitude determination communities. He touched the lives of many. He had a love for life, an incredible sense of humor, and wisdom that he shared freely with everyone he met. To honor Professor Bar-Itzhack's memory, as well as his numerous seminal professional achievements, an international symposium was held in Haifa, Israel, on October 14-17, 2012, under the auspices of the Faculty of Aerospace Engineering at the Technion and the Israeli Association for Automatic Control. The book contains 27 selected, revised, and edited contributed chapters written by eminent international experts. The book is organized in three parts: (1) Estimation, (2) Navigation and (3) Spacecraft Guidance, Navigation and Control. The volume was prepared as a reference for research scientists and practicing engineers from academy and industry in the fields of estimation, navigation, and spacecraft GN&C.
After pioneering this technology and growing the market, COMSAT fell prey to changes in government policy and to its own lack of entrepreneurial talent. The author explores the factors which contributed to this rise and fall of COMSAT.
This book introduces readers to the navigation, guidance and control technologies involved in single-spacecraft, double-spacecraft, and multiple-spacecraft tasks in elliptical orbits. It comprehensively covers the key technologies of guidance, navigation and control (GNC) system design for spacecraft in elliptical orbits, including the orbit design, formation configuration design and maintenance, autonomous navigation technology and relative navigation technology, as well as autonomous rendezvous technology. The methods that this book introduces are very close to actual practical engineering applications and presented in an accessible style. The book can serve as reference teaching material for senior undergraduates and postgraduates with space navigation related majors, while also providing essential information and guidance for research personnel and engineering technical personnel engaged in the development of GNC systems for spacecraft.
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
This thesis develops new and powerful methods for identifying planetary signals in the presence of "noise" generated by stellar activity, and explores the physical origin of stellar intrinsic variability, using unique observations of the Sun seen as a star. In particular, it establishes that the intrinsic stellar radial-velocity variations mainly arise from suppression of photospheric convection by magnetic fields. With the advent of powerful telescopes and instruments we are now on the verge of discovering real Earth twins in orbit around other stars. The intrinsic variability of the host stars themselves, however, currently remains the main obstacle to determining the masses of such small planets. The methods developed here combine Gaussian-process regression for modeling the correlated signals arising from evolving active regions on a rotating star, and Bayesian model selection methods for distinguishing genuine planetary signals from false positives produced by stellar magnetic activity. The findings of this thesis represent a significant step towards determining the masses of potentially habitable planets orbiting Sun-like stars.
This book presents a comprehensive geopolitical analysis of European space activities. By studying outer space as a physical and socio-economic space as well as a military-diplomatic area, the author helps readers understand outer space as a geopolitical environment. The book also offers insights into the behavior and strategies of different actors, with a special focus on the European space strategy and the nature of the European space program and diplomacy.
This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, included the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.
This textbook offers a readily comprehensible introduction to classical Newtonian gravitation, which is fundamental for an understanding of classical mechanics and is particularly relevant to Astrophysics. The opening chapter recalls essential elements of vectorial calculus, especially to provide the formalism used in subsequent chapters. In chapter two Classical Newtonian gravity theory for one point mass and for a generic number N of point masses is then presented and discussed. The theory for point masses is naturally extended to the continuous case. The third chapter addresses the paradigmatic case of spherical symmetry in the mass density distribution (central force), with introduction of the useful tool of qualitative treatment of motion. Subsequent chapters discuss the general case of non-symmetric mass density distribution and develop classical potential theory, with elements of harmonic theory, which is essential to understand the potential development in series of the gravitational potential, the subject of the fourth chapter. Finally, in the last chapter the specific case of motion of a satellite around the earth is considered. Examples and exercises are presented throughout the book to clarify aspects of the theory. The book is aimed at those who wish to progress further beyond an initial bachelor degree, onward to a master degree, and a PhD. It is also a valuable resource for postgraduates and active researchers in the field.
The PRoject for OnBoard Autonomy (PROBA) missions are a series of microsatellites launched by the European Space Agency (ESA) and intended to provide an in-orbit test platform for new technologies. The second satellite in the series, PROBA2, was launched on November 2, 2009. The primary mission goal of PROBA2 is to perform an in-flight demonstration of a series of new spacecraft technologies. The secondary mission goal is the exploitation of the payload of scientific instruments consisting of two Sun-sensing instruments, the Sun Watcher with Active Pixel Sensor and Image Processing, and the Large Yield Radiometer. Both instruments are unique in a technological sense but also provide unique scientific data for the solar physics community. In this volume, a number of papers are collected that give an overview of the mission, the spacecraft, its instrument and its operations. In addition, the scientific outcome of the mission during the first two years is presented in a series of research papers. This volume is aimed at graduate students and researchers active in solar physics and space science. Previously published in Solar Physics journal, Vol. 286, No. 1, 2013.
How does it happen that billions of stars can cooperate to produce the beautiful spirals that characterize so many galaxies, including ours? This book reviews the history behind the discovery of spiral galaxies and the problems faced when trying to explain the existence of spiral structure within them. In the book, subjects such as galaxy morphology and structure are addressed as well as several models for spiral structure. The evidence in favor or against these models is discussed. The book ends by discussing how spiral structure can be used as a proxy for other properties of spiral galaxies, such as their dark matter content and their central supermassive black hole masses, and why this is important.
Based on lecture notes on a space robotics course, this book offers a pedagogical introduction to the mechanics of space robots. After presenting an overview of the environments and conditions space robots have to work in, the author discusses a variety of manipulatory devices robots may use to perform their tasks. This is followed by a discussion of robot mobility in these environments and the various technical approaches. The last two chapters are dedicated to actuators, sensors and power systems used in space robots. This book fills a gap in the space technology literature and will be useful for students and for those who have an interest in the broad and highly interdisciplinary field of space robotics, and in particular in its mechanical aspects.
This book introduces readers to the application of orbital data on space objects in the contexts of conjunction assessment and space situation analysis, including theories and methodologies. It addresses the main topics involved in space object conjunction assessment, such as: orbital error analysis of space objects; close approach analysis; the calculation, analysis and application of collision probability; and the comprehensive assessment of collision risk. In addition, selected topics on space situation analysis are also presented, including orbital anomaly and space event analysis, and so on. The book offers a valuable guide for researchers and engineers in the fields of astrodynamics, space telemetry, tracking and command (TT&C), space surveillance, space situational awareness, and space debris, as well as for graduates majoring in flight vehicle design and related fields.
The book sheds new lights on the evolution of Russian space activities with a focus on their strategy of international cooperation. This analysis is carried out in relation to the evolution of the domestic and international dynamics that have been impacting the country's direction in space, with the ultimate goal of providing an assessment on their impact for current and foreseeable Europe-Russia space relations. Russia has traditionally been one of the two main strategic partners for Europe in its space endeavor. Hitherto, long-standing cooperation has been nurtured between the two actors in various areas, from scientific research to space transportation and human spaceflight. In recent years, however, a number of endogenous and exogenous developments has triggered significant changes in Russia's space posture. These changes are evident in the adjustment of Russia's space policies and programmatic goals, in the restructuring of the domestic space industry as well as in the attitude towards international space partnerships.
This book is the result of a working group sponsored by ISSI in
Bern, which was initially created to study possible ways to
calibrate a Far Ultraviolet (FUV) instrument after launch. In most
cases, ultraviolet instruments are well calibrated on the ground,
but unfortunately, optics and detectors in the FUV are very
sensitive to contaminants and it is very challenging to prevent
contamination before and during the test and launch sequences of a
space mission. Therefore, ground calibrations need to be confirmed
after launch and it is necessary to keep track of the temporal
evolution of the sensitivity of the instrument during the mission.
|
You may like...
Risky Business - Why Insurance Markets…
Liran Einav, Amy Finkelstein, …
Paperback
Financial Mathematics For Actuaries…
Wai-Sum Chan, Yiu-Kuen Tse
Hardcover
R3,302
Discovery Miles 33 020
Health Economics and Healthcare Reform…
Information Resources Management Association
Hardcover
R9,778
Discovery Miles 97 780
Managing Workers' Compensation - A Guide…
Keith Wertz, James J Bryant
Hardcover
R4,227
Discovery Miles 42 270
|