![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science
C. T. Russell Originally published in the journal Space Science Reviews, Volume 136, Nos 1-4. DOI: 10. 1007/s11214-008-9344-1 (c) Springer Science+Business Media B. V. 2008 The Sun-Earth Connection is now an accepted fact. It has a signi cant impact on our daily lives, and its underpinnings are being pursued vigorously with missions such as the Solar TErrestrial RElations Observatory, commonly known as STEREO. This was not always so. It was not until the middle of the nineteenth century that Edward Sabine connected the 11-year geomagnetic cycle with Heinrich Schwabe's deduction of a like periodicity in the sunspot record. The clincher for many was Richard Carrington's sighting of a great whi- light are on the Sun, on September 1, 1859, followed by a great geomagnetic storm 18 hours later. But was the Sun-Earth Connection signi cant to terrestrial denizens? Perhaps in 1859 it was not, but a century later it became so. Beginning in the 1930's, as electrical powergrids grew in size, powercompanies began to realize that they occasionally had power blackouts during periods of intense geomagnetic activity. This correlation did not appear to be suf ciently signi cant to bring to the attention of the public but during the International Geophysical Year (IGY), when geomagnetic activity was being scrutinized intensely, the occurrence of a large North American power blackout during a great magnetic storm was impossible to ignore.
There is little doubt that robotic and automated systems in space will contribute considerably to the future commercialisation of the space environment. This text provides a systems eye view of robotic spacecraft design with an emphasis on control systems.The first half of the book introduces the techniques of robotics and robotic control, and is the most mathematical part of the book. The second half of the book deals with spacecraft systems themselves, and how a robotic-type payload influences them, including consideration of financial and legal issues which are often left out of technical texts.Running through the book is the implementation of a freeflying robotic spacecraft called ATLAS (Advanced TeLerobotic Actuation System). However, the techniques presented in the book are completely general and the ATLAS spacecraft just serves as an example, albeit a very useful and economically viable space system.
This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loeve Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part of the Moon Far Side a UN-protected zone, in order to preserve the unique radio-noise-free environment for future scientific use.
The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.
Documents the science, the mission, the spacecraft and the
instrumentation on a unique NASA mission to study the Earth s
dynamic, dangerous and fascinating Van Allen radiation belts that
surround the planet This collection of articles provides broad and detailed information about NASA s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere.Originally published in Space Science Reviews, Vol. 179/1-4, 2013."
In the aerospace industry, avoiding operating issues, especially in regard to space missions and satellite structures, is crucial. The vast majority of these issues can be traced to disturbances in the electromagnetic fields used. Electromagnetic Compatibility for Space Systems Design is a critical scholarly resource that examines the applications of electromagnetic compatibility and electromagnetic interference in the space industry. Featuring coverage on a wide range of topics, such as magnetometers, electromagnetic environmental effects, and electromagnetic shielding, this book is geared toward managers, engineers, and researchers seeking current research on the applications of electromagnetic technologies in the aerospace field.
This book aims to contribute significantly to the understanding of issues of value (including the ultimate value of space-related activities) which repeatedly emerge in interdisciplinary discussions on space and society. Although a recurring feature of discussions about space in the humanities, the treatment of value questions has tended to be patchy, of uneven quality and even, on occasion, idiosyncratic rather than drawing upon a close familiarity with state-of-the-art ethical theory. One of the volume's aims is to promote a more robust and theoretically informed approach to the ethical dimension of discussions on space and society. While the contributions are written in a manner which is accessible across disciplines, the book still withstands scrutiny by those whose work is primarily on ethics. At the same time it allows academics across a range of disciplines an insight into current approaches toward how the work of ethics gets done. The issues of value raised could be used to inform debates about regulation, space law and protocols for microbial discovery as well as longer-range policy debates about funding.
Interstellar Travel: Purpose and Motivations is a comprehensive, technical look at the necessary considerations for interstellar travel addressed by leading experts in the field, from scientists studying possible destinations (exoplanets) and the vast distances between, to those concerned with building institutions and capabilities in society that could sustain such endeavors. In addition to the technical, medical, and anthropological aspects of deep space travel, the ethics and morality of spreading Earth-based life to other worlds is also examined. In the first book of a three-book compilation, Interstellar Travel: Purpose and Motivations offers in-depth, up-to-date and realistic technical and scientific considerations in the pursuit of interstellar travel and is an integral reference for scientists, engineers, researchers and academics working on, or interested in, space development and space technologies. With a renewed interest in space exploration and development evidenced by the rise of the commercial space sector and various governments now planning to send humans back to the moon and to Mars, so also is interest in taking the next steps beyond the Solar System and to the ultimate destination - planets circling other stars.
With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.
An outgrowth of the first Asia-Pacific Regional School on the International Heliophysical Year (IHY), this volume contains a collection of review articles describing the universal physical processes in the heliospace influenced by solar electromagnetic and mass emissions. The Sun affects the heliosphere in the short term (space weather) and in the long term (space climate) through numerous physical processes that exhibit similarities in various spatial domains of the heliosphere. The articles take into account various aspects of the Sun-heliosphere connection under a systems approach. This volume will serve as a ready reference work for research in the emerging field of heliophysics, which describes the physical processes taking place in the physical space controlled by the Sun out to the local interstellar medium.
This book provides an introduction to the mission design of communication satellites. There are many excellent books on orbit mechanics and astrodynamics, but until now there has been no single work that explains the ins and outs of mission design, and explains why things are done the way they are done as well as how they are done. The book will be of interest not only to practising mission analysts, but also to spacecraft systems engineers, spacecraft project managers and to those who wish to employ the unique attributes of geosynchronous spacecraft for useful purposes. At last, an explanation of the ins and outs of mission design is offered in a clear and concise matter. The self-contained reference book utilizes analytical details and illustrations to explain the broad aspects of design and mission operations. This unique approach makes it easier for you to assimilate the necessary information to analyze, plan, and carry out a geosynchronous mission from launch, through orbit transfer and station acquisition, to station-keeping and on-orbit operations. This book will be a useful reference for practising mission analysts, spacecraft systems engineers, project managers and others with a practical interest in the uniqiue attributes of geosynchronous spacecraft.
Atthiswriting the Cassini spacecraft has ?redits engine and successfully inserted itself andits precious cargoof scienti?c instruments into orbit, the ?rst step of its exploration of the Saturnian system. The suspense is not over, however. While excitingimages of therings have been captured, anexotic composition of Phoebe sensedby themapping spectrometer and unexpectedpanoply of magneticwaves andplasma dynamics encountered on the incoming trajectory andinitial orbit, the Huygensprobeisstillonboardandthe?rstclose?ybyofTitanhasnottakenplace. Not until Christmas Day will the probe bereleased.Navigators are still checking theircalculations, worryingaboutknownunknownslikethemassofSaturn'smoons that could cause ever so small a deviation from the planned trajectory of the probe. Theorbiter investigators are also anxious but theyget their taste of Titan earlier, on October 26.Howwell will theydetect the surface? How thickisthe atmosphere? Does Titan haveamagnetic?eld?Isthere lightninginthe atmosphere of Titan? While terrestrial and HubbleSpace Telescope pictures have improvedgreatly over the years, they cannot match the resolution obtainable from orbitabout theplanet, and much of the data issimply unobtainablewithout direct insitu sensing. Volume 1 of this three volume set described the Cassini/Huygens mission, its scienti?c objectives and the Huygens probethat will soon enter theTitan at- sphere. Volume 2 described the insitu investigations on theorbiter. In this, the third and ?nal volume of the compendium, we describethe remote sensing inv- tigations: radioscience, radar, visibleandinfrared spectroscopy, thermalinfrared studies, ultraviolet spectroscopy and visible imagery.
Human migration to space will be the most profound catalyst for evolution in the history of humankind, yet this has had little impact on determining our strategies for this next phase of exploration. Habitation in space will require extensive technological interfaces between humans and their alien surroundings and how they are deployed will critically inform the processes of adaptation. As humans begin to spend longer durations in space-eventually establishing permanent outposts on other planets-the scope of technological design considerations must expand beyond the meager requirements for survival to include issues not only of comfort and well-being, but also of engagement and negotiation with the new planetary environment that will be crucial to our longevity beyond Earth. Approaching this question from an interdisciplinary approach, this dissertation explores how the impact of interior space architecture can meet both the physical and psychological needs of future space colonists and set the stage for humankind to thrive and grow while setting down new roots beyond Earth.
Presents a comprehensive approach to the open questions in solar cosmic ray research and includes consistent and detailed considerations of conceptual, observational, theoretical, experimental and applied aspects of the field. The results of solar cosmic ray (SCR) investigations from 1942 to the present are summarized in this book. It treats the research questions in a self-contained form in all of its associations, from fundamental astrophysical aspects to geophysical, aeronautical and cosmonautical applications. A large amount of new data is included, which has been accumulated during the last several decades of space research. This second edition contains numerous updates and corrections to the text, figures and references. The author has also added several new sections about GLEs and radiation hazards. In addition, an extensive bibliography is provided, which covers non-partially the main achievements and failures in the field. This volume is aimed at graduate students and researchers in solar physics and space science.
The 17 chapters of this book grew out of the tutorial lectures given by leading world-class experts at the NATO Advanced Research Workshop "Effects of Space Weather on Technology Infrastructure" - ESPRIT, which was held in Rhodes on March 25-29, 2004. All manuscripts were refereed and subsequently meticulously edited by the editor to ensure the highest quality for this monograph. I owe particular thanks to the lecturers of the ESPRIT Advanced Research Workshop for producing these excellent tutorial reviews, which convey the essential knowledge and the latest advances in our field. Due to the breadth, extensive literature citations and quality of the reviews we expect this publication to serve extremely well as a reference book. Multimedia material referring to individual chapters of the book is accessible on the accompanying CD. The aim of ESPRIT was to assess existing knowledge and identify future actions regarding monitoring, forecasting and mitigation of space weather induced malfunction and damage of vital technological systems operating in space and on the ground.
This book deals with different aspects of small satellites for Earth observation: programmatics; current and planned Earth observation missions; spacebased instruments; satellite constellations; satellite subsystems;spacecraft bus systems; lessons learned; special aspects (e.g. thermal control, integration and test, launch services, ground station).The material provided is collected from the 6th IAA Symposium on Small Satellites for Earth Observation, initiated by the International Academy of Astronautics (IAA), and hosted by DLR, the German Aerospace Center. The participation of scientists, engineers, and managers from 24 countries reflected the high interest in the use of small satellites for dedicated missions applied to Earth observation.
This book explores the character and contours of the Asian Space Powers. At present, Asian states like China, Japan and India are found investing in space technologies with analogous social and scientific and probably with divergent military intents. Other Asian states like Israel, South Korea and Malaysia are also making investments in the space arena. States like Iran and North Korea are faulted for using space launches as a demonstrative tool to achieve strategic objectives. This work examines this entire maze of activities to unearth where these states are making these investments to accomplish their state-specific goal or are they also trying to surpass each other by engaging in competition. Explaining why and how these states are making investments towards achieving their socio-economic and strategic mandate this book infers that the possibility of Asian Space Race exists but is presently fairly diminutive.
This book provides overviews of the new reduction as well as on the use of the Hipparcos data in a variety of astrophysical implementations. A range of new results are included. The Hipparcos data provide a unique opportunity for the study of satellite dynamics as the orbit covered a wide range of altitudes, showing in detail the different torques acting on the satellite. The book is accompanied by a DVD with the new catalogue and the underlying data.
M. Rycroft, FacultyMember, InternationalSpaceUniversity e-mail: [email protected] "The Space Transportation Market: Evolution or Revolution?" was the question which was the focus for the papers presented, and also the Panel Discussions, at the fifth annual Symposium organised by the International Space University. Held in Strasbourg, France, for three lively days at the end of May 2000, the Symposium brought together representatives of the developers, providers and operators of space transportation systems, of regulatory bodies, and of users of the space transportation infrastructure in many fields, as well as experts in policy and market analysis. From the papers published here, it is clear that today's answer to the question tends more towards evolution than to revolution. The space launch industry is still not a fully mature one, and is still reliant on at least partial funding by governments. Better cooperation is essential between governments, launch providers, satellite builders and satellite operators in order to reduce the problems which the space transportation market faces today.
"Spacecraft Sensors," the first of its kind, offers a comprehensive review of many aspects and intricacies of sensors used in the spacecraft industry. It covers sensor development from concept, design, and cost, to building, testing, interfacing, integrating, and on-orbit operation. It is intended for the specialist or non-specialist engineer, scientist, and those involved in the business aspect of the spacecraft industry. Focusing on how these various disciplines contribute to the development of a sensor used in space, this key text: Explains how mathematics, physics, business, and engineering-based concepts are used to develop and design a sensor which complies with a set of specific requirements. Discusses essential topics such as cost estimation, signal processing, noise reduction, filters, phased arrays, radars, optics, and radiometers used in space operation. Covers a range of typical sensors used in the spacecraft industry such as infrared, passive microwave, radars and spacebased GPS sensors. Concludes each chapter with examples of past and current orbiting sensors such as DSP, SBIRS, CHAMP, LANDSAT, and GOES to illustrate how concepts are applied. Includes the Matlab codes used to create the example plots in order to give the reader a starting point for further analysis "Spacecraft Sensors" is an invaluable resource for engineers, technical consultants, those in the business division, and research scientists associated with spacecraft projects. It is also an excellent textbook for undergraduate and postgraduate students studying the development, design and applications of spacebased sensors.
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
Stars are born and die in clouds of gas and dust, opaque to most types of radiation, but transparent in the infrared. Requiring complex detectors, space missions and cooled telescopes, infrared astronomy is the last branch of this discipline to come of age. After a very successful sky survey performed in the eighties by the IRAS satellite, the Infrared Space Observatory, in the nineties, brought spectacular advances in the understanding of the processes giving rise to powerful infrared emission by a great variety of celestial sources. Outstanding results have been obtained on the bright comet Hale-Bopp, and in particular of its water spectrum, as well as on the formation, chemistry and dynamics of planetary objects in the solar system. Ideas on the early stages of stellar formation and on the stellar initial mass function have been clarified. ISO is the first facility in space able to provide a systematic diagnosis of the physical phenomena and the chemistry in the close environment of pre-main sequence stars, in the interstellar medium, and in the final stages of stellar life, using, among other indicators, molecular hydrogen, ubiquitous crystalline silicates, water and ices. ISO has dramatically increased our ability to investigate the power production, excitation and fuelling mechanism of galaxies of every type, and has discovered a new very cold dust component in galaxies. ISO has demonstrated that luminous infrared galaxies were brighter and much more numerous in the past, and that they played a dominant role in shaping present day galaxies and in producing the cosmic infrared background. |
You may like...
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
Modern Spacecraft Guidance, Navigation…
Vincenzo Pesce, Andrea Colagrossi, …
Paperback
R5,061
Discovery Miles 50 610
Computers in Earth and Environmental…
Hamid Reza Pourghasemi
Paperback
R4,025
Discovery Miles 40 250
Electrostatic Dust Mitigation and…
Nima Gharib, Javad Farrokhi Derakhshandeh, …
Paperback
R3,581
Discovery Miles 35 810
Spacecraft Formation Flying - Dynamics…
Kyle T. Alfriend, Srinivas R. Vadali, …
Hardcover
R2,545
Discovery Miles 25 450
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
|