![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science
The book collects selected papers presented at the 5th International Conference on Aerospace System Science and Engineering (ICASSE 2021), organized by Shanghai Jiao Tong University, China, hosted by Moscow Aviation Institute, Russia. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conference has been organized annually since 2017 and host in Shanghai, Moscow, and Toronto in turn, where the three regional editors of journal Aerospace Systems are located. This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation and surveillance, Dynamics and control, Intelligent sensing and Information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, Bionic micro-aircraft/spacecraft.
The COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) was held in the National Astronomy Observatories of Chinese Academy of Sciences (NAOC) in Beijing, China in September 10-12, 2001. The meeting was focused on five areas of the solar-terrestrial magnetic activity and space environment studies, including study on solar surface magnetism; solar magnetic activity, dynamical response of the heliosphere; space weather prediction; and space environment exploration and monitoring. A hot topic of space research, CMEs, which are widely believed to be the most important phenomenon of the space environment, is discussed in many papers. Other papers show results of observational and theoretical studies toward better understanding of the complicated image of the magnetic coupling between the Sun and the Earth, although little is still known little its physical background. Space weather prediction, which is very important for a modern society expanding into out-space, is another hot topic of space research. However, a long way is still to go to predict exactly when and where a disaster will happen in the space. In that sense, there is much to do for space environment exploration and monitoring. The manuscripts submitted to this Monograph are divided into the following parts: (1) solar surface magnetism, (2) solar magnetic activity, (3) dynamical response of the heliosphere, (4) space environment exploration and monitoring; and (5) space weather prediction. Papers presented in this meeting but not submitted to this Monograph are listed by title as unpublished papers at the end of this book.
If charged particles move through the interplanetary or interstellar medium, they interact with a large-scale magnetic ?eld such as the magnetic ?eld of the Sun or the Galactic magnetic ?eld. As these background ?elds are usually nearly constant in time and space, they can be approximated by a homogeneous ?eld. If there are no additional ?elds, the particle trajectory is a perfect helix along which the par- cle moves at a constant speed. In reality, however, there are turbulent electric and magnetic?elds dueto the interstellaror solar wind plasma. These ?elds lead to sc- tering of the cosmic rays parallel and perpendicular to the background ?eld. These scattering effects, which usually are of diffusive nature, can be described by s- tial diffusion coef?cients or, alternatively, by mean free paths. The knowledge of these parameters is essential for describing cosmic ray propagation as well as d- fusive shock acceleration. The latter process is responsible for the high cosmic ray energies that have been observed. The layout of this book is as follows. In Chap. 1, the general physical scenario is presented. We discuss fundamental processes such as cosmic ray propagation and acceleration in different systems such as the solar system or the interst- lar space. These processes are a consequence of the interaction between charged cosmic particles and an astrophysical plasma (turbulence). The properties of such plasmas are therefore the subject of Chap. 2.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang'e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
There is an unbridged gap between human aspirations to travel into space and the barriers to realizing such dreams. Despite optimistic predictions, a viable space tourism industry has yet to emerge, with only a handful of 'millionaire' space tourists having experienced travel in outer space. Space tourism remains an elusive dream. This is the first comprehensive, multidisciplinary work on the emergent phenomenon of space tourism. Leading specialists from a range of fields cover a wide spectrum of topics including the space history and technology underpinning current developments; space tourists' motivations; and the environmental, social, and legal aspects concomitant with a space tourism industry. The book is unique in its focus on virtual forms of space travel, such as those manifesting in virtual reality, films, and games. The volume takes a nuanced and critical approach to the development of aspirations to leave Earth, stressing the far-reaching implications for the environment and for human life and society on Earth. The book is written in an approachable manner, making it accessible to both academics and the interested general reader. Owing to its interdisciplinary character, it should be of interest to practitioners and teachers across the sciences, humanities, and social sciences.
Due to steadily improving experimental accuracy, relativistic concepts - based on Einstein's theory of Special and General Relativity - are playing an increasingly important role in modern geodesy. This book offers an introduction to the emerging field of relativistic geodesy, and covers topics ranging from the description of clocks and test bodies, to time and frequency measurements, to current and future observations. Emphasis is placed on geodetically relevant definitions and fundamental methods in the context of Einstein's theory (e.g. the role of observers, use of clocks, definition of reference systems and the geoid, use of relativistic approximation schemes). Further, the applications discussed range from chronometric and gradiometric determinations of the gravitational field, to the latest (satellite) experiments. The impact of choices made at a fundamental theoretical level on the interpretation of measurements and the planning of future experiments is also highlighted. Providing an up-to-the-minute status report on the respective topics discussed, the book will not only benefit experts, but will also serve as a guide for students with a background in either geodesy or gravitational physics who are interested in entering and exploring this emerging field.
This book presents two important new findings. First, it demonstrates from first principles that turbulent heating offers an explanation for the non-adiabatic decay of proton temperature in solar wind. Until now, this was only proved with reduced or phenomenological models. Second, the book demonstrates that the two types of anisotropy of turbulent fluctuations that are observed in solar wind at 1AU originate not only from two distinct classes of conditions near the Sun but also from the imbalance in Alfven wave populations. These anisotropies do not affect the overall turbulent heating if we take into account the relation observed in solar wind between anisotropy and Alfven wave imbalance. In terms of the methods used to obtain these achievements, the author shows the need to find a very delicate balance between turbulent decay and expansion losses, so as to directly solve the magnetohydrodynamic equations, including the wind expansion effects.
This Palgrave Pivot investigates the efforts of five aerospace companies-SpaceX, Blue Origin, Virgin Galactic, Orbital Sciences, and the Boeing Company-to launch their entry into the field of commercial space transportation. Can private sector firms raise enough capital to end the usual dependence on government funding? What can historical examples of other large-scale transportation initiatives, such as the first transcontinental railway and the first commercial jetliner, teach us about the prospects of commercial space flight? As Howard E. McCurdy shows, commercializing space is a great experiment, the outcome of which will depend on whether new space entrepreneurs can attract support from a variety of traditional and nontraditional sources.
An astonishing exploration of planet formation and the origins of life by one of the world's most innovative planetary geologists. In 1959, the Soviet probe Luna 3 took the first photos of the far side of the moon. Even in their poor resolution, the images stunned scientists: the far side is an enormous mountainous expanse, not the vast lava-plains seen from Earth. Subsequent missions have confirmed this in much greater detail. How could this be, and what might it tell us about our own place in the universe? As it turns out, quite a lot. Fourteen billion years ago, the universe exploded into being, creating galaxies and stars. Planets formed out of the leftover dust and gas that coalesced into larger and larger bodies orbiting around each star. In a sort of heavenly survival of the fittest, planetary bodies smashed into each other until solar systems emerged. Curiously, instead of being relatively similar in terms of composition, the planets in our solar system, and the comets, asteroids, satellites and rings, are bewitchingly distinct. So, too, the halves of our moon. In When the Earth Had Two Moons, esteemed planetary geologist Erik Asphaug takes us on an exhilarating tour through the farthest reaches of time and our galaxy to find out why. Beautifully written and provocatively argued, When the Earth Had Two Moons is not only a mind-blowing astronomical tour but a profound inquiry into the nature of life here-and billions of miles from home.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation, and surveillance, Dynamics and control, Intelligent sensing and information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, and Bionic micro-aircraft/spacecraft. The book collects selected papers presented at the 4th International Conference on Aerospace System Science and Engineering (ICASSE 2020), organized by Shanghai Jiao Tong University, China, held on 14-16 July 2020 as virtual event due to COVID-19. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conferences have been organized annually since 2017 and hosted in Shanghai, Moscow, and Toronto in turn, where the three regional editors of the journal Aerospace Systems are located.
Advanced Remote Sensing: Terrestrial Information Extraction and Applications, Second Edition, is a thoroughly updated application-based reference that provides a single source on the mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors like RADAR and LIDAR. The book provides scientists in a number of different fields, including geography, geophysics, geology, atmospheric science, environmental science, planetary science and ecology with access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques presented are well designed and integrated, making the book's content intuitive and practical in its implementation.
The Trans-Neptunian Solar System is a timely reference highlighting the state-of-the-art in current knowledge on the outer solar system. It not only explores the individual objects being discovered there, but also their relationships with other Solar System objects and their roles in the formation and evolution of the Solar System and other planets. Integrating important findings from recent missions, such as New Horizons and Rosetta, the book covers the physical properties of the bodies in the Trans-Neptunian Region, including Pluto and other large members of the Kuiper Belt, as well as dynamical indicators for Planet 9 and related objects and future prospects. Offering a complete look at exploration and findings in the Kuiper Belt and the rest of the outer solar system beyond Neptune, this book is an important resource to bring planetary scientists, space scientists and astrophysicists up-to-date on the latest research and current understandings.
This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30-August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.
This thesis focuses on ULF (Ultra-low-frequency) waves' interaction with plasmasphere particles and ring current ions in the inner magnetosphere. It first reports and reveals mutual effect between ULF waves and plasmasphere using Van Allen Probes data. The differences and similarities of different ring current ions interacting with ULF waves are extensively explored using Cluster data, which provides a potential explanation for O+-dominated ring current during the magnetic storms. Furthermore, this thesis finds a method to study the phase relationship between ULF waves and drift-bounce resonant particles, and proposes that the phase relationship can be used to diagnose the parallel structure of standing wave electric field and energy transfer directions between waves and particles. The findings in this thesis can significantly promote our understanding of ULF waves' role in the dynamics of inner magnetosphere.
A true revolution has rocked the space industry, as Silicon Valley and new startup companies around the world have shaken up the status quo. This has in turn triggered a hefty response among traditional aerospace companies, launching the sector into the new Space 2.0. This book explains how and why this remarkable change has happened, starting from the industry's origins during the Space Age and working its way to the present day. No other industry in the world has experienced the dramatic shift in technology and services as rapidly as the field of satellite services and rocket launch systems has. This book analyzes the dynamic shift over the past decade in how satellites are designed, manufactured, launched, and operated. It also turns an eye to the future, discussing the amazing feats and potential issues we can expect from this shifting arena by 2030. With its beginner-friendly writing style and plethora of illustrations, this book serves as a perfect introductory text to students and professionals alike wishing to learn more about the key trends in the field of space applications and launch systems.
Cluster was one of the two missions - the other being the Solar and Heliospheric Observatory (SOHO) - constituting the Solar Terrestrial Science Programme (STSP), the first `cornerstone' of ESA's Horizon 2000 Programme. After the catastrophic Ariane-5 accident on 4 June 1996 which destroyed the four Cluster spacecraft, the European Space Agency Science Programme Committee gave approval to refurbish the spare Cluster spacecraft and make it ready for flight. This new spacecraft, considered to be the first of a new fleet, is called Phoenix. In the meantime various options to repeat the Cluster four-point measurements are being studied. Since Phoenix, as the fifth Cluster spacecraft, will be equipped with the spare Cluster experiments, the instrumentation articles in this book are still appropriate to the new mission. Furthermore, the objectives of the recovery mission, the ground systems, the ground observation program and the theory and modelling efforts all remain unchanged. Thus this series of articles will continue to be essential to the Cluster community and to the general scientific community as the recovery mission is implemented.
This book highlights the technological and managerial fundamentals and frontier questions of space science. Space science is a new interdisciplinary and comprehensive subject that takes spacecraft as the main tools to study the planet Earth, the solar-terrestrial space, the solar system, and even the whole universe, to answer significant questions covering the formation and evolution of the solar system and the universe, the origin and evolution of life and the structure of the material. The book introduces major scientific questions in various branches of space science and provides related technological and managerial knowledge. It also discusses the necessity of international cooperation and elaborates on the strategic planning of space science in China. The book can be used as a reference book or textbook for scientists, engineers, college students, and the public participating in space science programs.
The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity examines the Earth's ionosphere as a dynamical system with signatures of complexity. The system is robust in its overall configuration, with smooth space-time patterns of daily, seasonal and Solar Cycle variability, but shows a hierarchy of interactions among its sub-systems, yielding apparent unpredictability, space-time irregularity, and turbulence. This interplay leads to the need for constructing realistic models of the average ionosphere, incorporating the increasing knowledge and predictability of high variability components, and for addressing the difficulty of dealing with the worst cases of ionospheric disturbances, all of which are addressed in this interdisciplinary book. Borrowing tools and techniques from classical and stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science, The Dynamical Ionosphere presents the state-of-the-art in dealing with irregularity, forecasting ionospheric threats, and theoretical interpretation of various ionospheric configurations.
This firsthand account of the development of the Apollo 11 mission gives a behind-the-scenes look at the 1969 moon landing mission from an engineer's perspective. The technical problems and solutions of designing a capsule to carry three astronauts--Buzz Aldrin, Neil Armstrong and Michael Collins--safely to the moon and back are covered in detail from the author's point of view. The contributions of Latino personnel in the Apollo program are described. |
You may like...
The Unknown and Impossible - How a…
Tamara Dietrich, Mark Erickson, …
Paperback
R670
Discovery Miles 6 700
Movement And Maneuver In Deep Space - A…
Brian E Hans, Christopher D Jefferson, …
Hardcover
R538
Discovery Miles 5 380
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
Spacecraft Formation Flying - Dynamics…
Kyle T. Alfriend, Srinivas R. Vadali, …
Hardcover
R2,545
Discovery Miles 25 450
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R4,841
Discovery Miles 48 410
Modern Spacecraft Guidance, Navigation…
Vincenzo Pesce, Andrea Colagrossi, …
Paperback
R5,061
Discovery Miles 50 610
|