![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Over the last few years it has become apparent that fluid turbulence shares many common features with plasma turbulence, such as coherent structures and self-organization phenomena, passive scalar transport and anomalous diffusion. This book gathers very high level, current papers on these subjects. It is intended for scientists and researchers, lecturers and graduate students because of the review style of the papers.
This is a review written by leading specialists on the state of the art of computational methods in lattice field theory. They cover a wide range: computer-assisted proofs, algorithms for computer simulation of field theories, effective field theories, computer studies of finite size effects, simulation with fast algorithms, and computer applicationsin experimental particle physics. The book addresses researchers, engineers, and graduate students in particle physics.
The fractal concept has become an important tool for understanding irregular complex systems in various scientific disciplines. This book discusses in great detail fractals in biology, heterogeneous chemistry, polymers, and the earth sciences. Beginning with a general introduction to fractal geometry it continues with eight chapters on self-organized criticality, rough surfaces and interfaces, random walks, chemical reactions, and fractals in chemistry, biology, and medicine. A special chapter entitled "Computer Exploration of Fractals, Chaos, and Cooperativity" presents computer demonstrations of fractal models.
This work addresses time-delay in complex nonlinear systems and, in particular, its applications in complex networks; its role in control theory and nonlinear optics are also investigated. Delays arise naturally in networks of coupled systems due to finite signal propagation speeds and are thus a key issue in many areas of physics, biology, medicine, and technology. Synchronization phenomena in these networks play an important role, e.g., in the context of learning, cognitive and pathological states in the brain, for secure communication with chaotic lasers or for gene regulation. The thesis includes both novel results on the control of complex dynamics by time-delayed feedback and fundamental new insights into the interplay of delay and synchronization. One of the most interesting results here is a solution to the problem of complete synchronization in general networks with large coupling delay, i.e., large distances between the nodes, by giving a universal classification of networks that has a wide range of interdisciplinary applications.
This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution. There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia's Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period. This book will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics.
The articles in this book reflect the omnipresence of diffusion processes in the natural sciences. They describe experimental results as well as theoretical models and computer simulations, and address a wide readership including graduate students. The problems treated stem from physics, astronomy, physical chemistry, biology, and medicine. The papers are presented in a tutorial style and reflect the present-day trends in the field.
This tenth volume in the Poincare Seminar Series describes recent developments at one of the most challenging frontiers in statistical physics - the deeply related fields of glassy dynamics, especially near the glass transition, and of the statics and dynamics of granular systems. These fields are marked by a vigorous interchange between experiment, theory, and numerical studies, all of which are well represented by the leading experts who have contributed articles to this volume. These articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a Galilean dialogue on the mean field and competing theories of the glass transition, a wide-ranging survey of colloidal glasses, and experimental as well as theoretical treatments of the relatively new field of dense granular flows. This book should be of broad general interest to both physicists and mathematicians.
This is a collection of reasonably self-contained review articles on various features of wetting phenomena from both experimental and theoretical points of view. The experimental papers are concerned with wetting at nanoscopic scales, magnetic wetting transitions, convection at interfaces, and adsorption on a surface. The theoretical part is constituted by recent exact results at d=3, some reviews on wetting and disorder, a mathematical description of wetting, front propagation, random surfaces, and wetting within Potts models. The book addresses researchers, engineers, and graduate students in chemistry, physics, and applied mathematics.
"MEMS Linear and Nonlinear Statics and Dynamics" presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage alsoincludes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modelingProvides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structuresProvides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces "MEMS Linear and Nonlinear Statics and Dynamics "is an ideal volume for researchers and engineers working in MEMS design and fabrication.
The state-of-the-art in the theoretical statistical physics treatment of the Janus fluid is reported with a bridge between new research results published in journal articles and a contextual literature review. Recent Monte Carlo simulations on the Kern and Frenkel model of the Janus fluid have revealed that in the vapor phase, below the critical point, there is the formation of preferred inert clusters made up of a well-defined number of particles: the micelles and the vesicles. This is responsible for a re-entrant gas branch of the gas-liquid binodal. Detailed account of this findings are given in the first chapter where the Janus fluid is introduced as a product of new sophisticated synthesis laboratory techniques. In the second chapter a cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce semi-quantitatively the micellization phenomenon.
In the last few years we have witnessed an upsurge of interest in exactly solvable quantum field theoretical models in many branches of theoretical physics ranging from mathematical physics through high-energy physics to solid states. This book contains six pedagogically written articles meant as an introduction for graduate students to this fascinating area of mathematical physics. It leads them to the front line of present-day research. The topics include conformal field theory and W algebras, the special features of 2d scattering theory as embodied in the exact S matrices and the form factor studies built on them, the Yang--Baxter equations, and the various aspects of the Bethe Ansatz systems.
The study of chaotic behaviour of dynamical systems has triggered new efforts to reconcile deterministic and stochastic processes as well as classical and quantum physics. New efforts are made to understand complex and unpredictable behaviour. The papers collected in this volume give a broad overview of these activities. Readers will get a glimpse of the growing importance of Levy processes for physics. They will find new views on fundamental concepts of quantum physics and will see many applications of chaotic and essentially random phenomena to a number of physical problems."
This volume presents the proceedings of the Workshop on Momentum Distributions held on October 24 to 26, 1988 at Argonne National Laboratory. This workshop was motivated by the enormous progress within the past few years in both experimental and theoretical studies of momentum distributions, by the growing recognition of the importance of momentum distributions to the characterization of quantum many-body systems, and especially by the realization that momentum distribution studies have much in common across the entire range of modern physics. Accordingly, the workshop was unique in that it brought together researchers in nuclear physics, electronic systems, quantum fluids and solids, and particle physics to address the common elements of momentum distribution studies. The topics dis cussed in the workshop spanned more than ten orders of magnitude range in charac teristic energy scales. The workshop included an extraordinary variety of interactions from Coulombic to hard core repulsive, from non-relativistic to extreme relativistic."
Addressing graduate students and researchers in physics and mathematics, this book fills a gap in the literature. It is an introduction into modern constructive physics, field theory and statistical mechanics and a survey on the most recent research in this field. It presents the main technical tools such as cluster expansion and their implementation in the rigorous renormalization group, and studies physical models in some detail. The reader will find a study of the ultraviolet limit of the Gross-Neveu model, of continuous symmetry breaking and of self-avoiding random walks in statistical mechanics, as well as applications to solid-state physics. Mathematicians will find constructive methods useful for studies in partial differential equations.
Quantum effects may be modelled by means of stochastic perturbation of non-linear partial differential (field) equations. Contributions to this field of research are collected in this volume. Finite dimensional stochastically perturbed Hamiltonian systems and infinite dimensional white noise analysis are treated. The main part concerns problems encountered in deterministic equations. Papers treat the existence of solutions for given initial data, the existence of non-linear bound states or solitary waves including a thorough discussion of various approaches to stability, and global properties (e.g. time decay properties) for non-linear wave equations. This volume provides a good survey of present-day research in non-linear problems of quantum theory for researchers and graduate students.
Foundations of Information Technology in the Era of Network and Mobile Computing is presented in two distinct but interrelated tracks: -Algorithms, Complexity and Models of Computation; -Logic, Semantics, Specification and Verification. This volume contains 45 original and significant contributions addressing these foundational questions, as well as 4 papers by outstanding invited speakers. These papers were presented at the 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), which was held in conjunction with the 17th World Computer Congress, sponsored by the International Federation for Information Processing (IFIP), and which convened in Montreal, Quebec, Canada in August 2002.
Broadband communications is widely recognized as one of the key technologies for building the next generation global network infrastructure to support ever-increasing multimedia applications. This book contains a collection of timely leading-edge research papers that address some of the important issues of providing such a broadband network infrastructure. Broadband Communications represents the selected proceedings of the Fifth International Conference on Broadband Communications, sponsored by the International Federation for Information Processing (IFIP) and held in Hong Kong in November 1999. The book is organized according to the eighteen technical sessions of the conference. The topics covered include internet services, traffic modeling, internet traffic control, performance evaluation, billing, pricing, admission policy, mobile network protocols, TCP/IP performance, mobile network performance, bandwidth allocation, switching systems, traffic flow control, routing, congestion and admission control, multicast protocols, network management, and quality of service. It will serve as an essential reference for computer scientists and practitioners.
Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon.Topics presented include: * large scale analog systems in silicon * neuromorphic silicon * auditory (ear) and vision (eye) systems in silicon * learning and adaptation in silicon * merging biology and technology * micropower analog circuit design * analog memory * analog interchipcommunication on digital buses GBP/LISTGBP Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.
This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse's Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stephane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness's seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Levy fields. The Levy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key issue concerns the identification of fractional parameters. This is the raison d'etre of the statistics chapter, where generalized quadratic variations methods are mainly used for estimating fractional parameters. Last but not least, the simulation is addressed in the last chapter. Unlike the previous issues, the simulation of fractional fields is still an area of ongoing research. The algorithms presented in this chapter are efficient but do not claim to close the debate.
The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The arguments of the book cover various applications, from the analysis of wealth distributions, the formation of opinions and choices, the price dynamics in a financial market, to the description of cell mutations and the swarming of birds and fishes. By means of methods inspired by the kinetic theory of rarefied gases, a robust approach to mathematical modelling and numerical simulation of multi-agent systems is presented in detail. The content is a useful reference text for applied mathematicians, physicists, biologists and economists who want to learn about modelling and approximation of such challenging phenomena.
Computational Architectures Integrating Neural and Symbolic Processes: A Perspective on the State of the Art focuses on a currently emerging body of research. With the reemergence of neural networks in the 1980s with their emphasis on overcoming some of the limitations of symbolic AI, there is clearly a need to support some form of high-level symbolic processing in connectionist networks. As argued by many researchers, on both the symbolic AI and connectionist sides, many cognitive tasks, e.g. language understanding and common sense reasoning, seem to require high-level symbolic capabilities. How these capabilities are realized in connectionist networks is a difficult question and it constitutes the focus of this book. Computational Architectures Integrating Neural and Symbolic Processes addresses the underlying architectural aspects of the integration of neural and symbolic processes. In order to provide a basis for a deeper understanding of existing divergent approaches and provide insight for further developments in this field, this book presents: (1) an examination of specific architectures (grouped together according to their approaches), their strengths and weaknesses, why they work, and what they predict, and (2) a critique/comparison of these approaches. Computational Architectures Integrating Neural and Symbolic Processes is of interest to researchers, graduate students, and interested laymen, in areas such as cognitive science, artificial intelligence, computer science, cognitive psychology, and neurocomputing, in keeping up-to-date with the newest research trends. It is a comprehensive, in-depth introduction to this new emerging field.
The book aims to give an overview of the previous Sitges Conferences, which have been held during the last 25 years, with special emphasis on topics related to non-equilibrium phenomena. It includes review articles and articles dealing with new trends in the subject, written by scientists who have played an important role in the development of this area. The book is intended as a commemorative edition of the Sitges Conferences. Graduate students of physics and researchers will find this a stimulating account of the development of non-equilibrium statistical mechanics in the last years, covering a wide scope of topics: kinetic theory, hydrodynamics, fluctuation phenomena and stochastic processes, relaxation phenomena, kinetics of phase transitions, growth kinetics, and so on.
Philosophy of the Text This text presents an introductory survey of the basic concepts and applied mathematical methods of nonlinear science as well as an introduction to some simple related nonlinear experimental activities. Students in engineering, phys ics, chemistry, mathematics, computing science, and biology should be able to successfully use this book. In an effort to provide the reader with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of the Maple software sys tem applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The CD-ROM provided with this book gives a wide variety of illustrative non linear examples solved with Maple. In addition, numerous annotated examples are sprinkled throughout the text and also placed on the CD. An accompanying set of experimental activities keyed to the theory developed in Part I of the book is given in Part II. These activities allow the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. |
![]() ![]() You may like...
Corruption Networks - Concepts and…
Oscar M. Granados, Jose R. Nicolas-Carlock
Hardcover
R3,680
Discovery Miles 36 800
Complex Networks XII - Proceedings of…
Andreia Sofia Teixeira, Diogo Pacheco, …
Hardcover
R4,680
Discovery Miles 46 800
Attractor Dimension Estimates for…
Nikolay Kuznetsov, Volker Reitmann
Hardcover
R6,190
Discovery Miles 61 900
Integrability, Supersymmetry and…
Sengul Kuru, Javier Negro, …
Hardcover
R3,004
Discovery Miles 30 040
Air Pollution Modeling and its…
Clemens Mensink, Volker Matthias
Hardcover
R5,762
Discovery Miles 57 620
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R4,179
Discovery Miles 41 790
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,865
Discovery Miles 18 650
|