![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Nonlinear dynamics is now recognized as playing a crucial role in a wide variety of disciplines. But what is only just beginning is the important process of cross fertilization and transfer of knowledge and expertise from one area to another. This book is intended to promote this process which will undoubtedly contribute greatly to furthering our understanding of complex systems. Contributions are provided by leading experts from the areas of sociology, cognitive science, chemistry, physiology, ecology, economics, neural networks and physics.
Over recent years, a considerable amount of effort has been devoted, both in industry and academia, towards the performance modelling, evaluation and prediction of Asynchronous Transfer Mode (ATM) networks. This book describes recent advances in ATM networks reflecting the state-of-the-art technology and research achievements worldwide. In addition, it provides a fundamental source of reference in the ATM field. Research topics discussed in detail include: * Traffic Modelling and Characterisation; * Routing; * Switch and Multiplexer Models; * Call Admission Control (CAC); * Congestion Control; * Resource Allocation; * Quality of Service (QoS); * Tools and Techniques. This volume contains recently extended refereed papers of the 5th International Workshop on Performance Modelling and Evaluation of ATM Networks, which was sponsored by the International Federation for Information Processing (IFIP) and held in Ilkley, UK in July 1997.Performance Analysis of ATM Networks continues the tradition established by the first three IFIP volumes on the subject, and it is ideal for personnel in computer/communication industries as well as academic and research staff in computer science and electrical engineering.
The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other's work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting particles. One of the main tasks of quantum electrodynamics is the development of a theory of an integrable perturbed quantum system, namely, noninteracting electromagnetic and electron-positron fields."
Thermodynamic methods of analysis have in recent years found ever-growing extensions in diverse regions of modern tech nology. The object of the present book is to apply these methods to the description of materials of varying physical properties. I hope the book will illustrate the wide variety and usefulness of thermodynamics which was well described by Albert Einstein: "A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression which classical thermodynamics made upon me." The work of the American thermodynamic school is well known in the Soviet Union, and thus it is a great pleasure to offer this book to American readers. V. V. Sychev v Preface At the present time, when a number of new areas of tech nology are rapidly evolving, it is difficult to present a modern course in technical thermodynamics without developing such sub jects as the thermodynamics of insulators, magnets, and super conductors, or without treating the features of thermodynamic systems located in a gravitational field and in conditions of weight lessness, etc. In fact the limited coverage of technical thermody namics in the usual textbooks and school equipment as a rule prevents the authors from giving any detailed discussion of these important problems. I therefore resolved to treat these problems in a separate text. I discussed the concept of this book with my teachers V. A."
In our daily lives we conceive of our surroundings as an objectively given reality. The world is perceived through our senses, and ~hese provide us, so we believe, with a faithful image of the world. But occ~ipnally we are forced to realize that our senses deceive us, e. g. , by illusions. For a while it was believed that the sensation of color is directly r~lated to the frequency of light waves, until E. Land (the inventor of the polaroid camera) showed in detailed experiments that our perception of, say, a colored spot depends on the colors of its surrounding. On the other hand, we may experience hallucinations or dreams as real. Quite evidently, the relationship between the "world" and our "brain" is intricate. Another strange problem is the way in which we perceive time or the "Now". Psychophysical experiments tell us that the psychological "Now" is an extended period of time in the sense of physics. The situation was made still more puzzling when, in the nineteen-twenties, Heisenberg and others realized that, by observing processes in the microscopic world of electrons and other elementary particles, we strongly interfere with that world. The outcome of experiments - at least in general - can only be predicted statistically. What is the nature ofthis strange relationship between "object" and "observer"? This is another crucial problem of the inside-outside or endo-exo dichotomy.
This book describes significant tractable models used in solid mechanics - classical models used in modern mechanics as well as new ones. The models are selected to illustrate the main ideas which allow scientists to describe complicated effects in a simple manner and to clarify basic notations of solid mechanics. A model is considered to be tractable if it is based on clear physical assumptions which allow the selection of significant effects and relatively simple mathematical formulations. The first part of the book briefly reviews classical tractable models for a simple description of complex effects developed from the 18th to the 20th century and widely used in modern mechanics. The second part describes systematically the new tractable models used today for the treatment of increasingly complex mechanical objects - from systems with two degrees of freedom to three-dimensional continuous objects.
Et mai . ..., si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aIIe.' Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent: therefore we may be sense' . able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music.
Arturo Carsetti According to molecular Biology, true invariance (life) can exist only within the framework of ongoing autonomous morphogenesis and vice versa. With respect to this secret dialectics, life and cognition appear as indissolubly interlinked. In this sense, for instance, the inner articulation of conceptual spaces appears to be linked to an inner functional development based on a continuous activity of selection and "anchorage" realised on semantic grounds. It is the work of "invention" and g- eration (in invariance), linked with the "rooting" of meaning, which determines the evolution, the leaps and punctuated equilibria, the conditions related to the unfo- ing of new modalities of invariance, an invariance which is never simple repetition and which springs on each occasion through deep-level processes of renewal and recovery. The selection perpetrated by meaning reveals its autonomy aboveall in its underpinning, in an objective way, the ongoing choice of these new modalities. As such it is not, then, concerned only with the game of "possibles," offering itself as a simple channel for pure chance, but with providing a channel for the articulation of the " le" in the humus of a semantic (and embodied) net in order to prepare the necessary conditionsfor a continuousrenewal and recoveryof original creativity. In effect, it is this autonomy in inventing new possible modules of incompressibility whichdeterminestheactualemergenceofnew(andtrue)creativity, whichalsotakes place through the "narration" of the effected construction.
The first part is devoted to colloidal particles and stochastic dynamics, mainly concerned with recent authoritative results in the study of interactions between colloidal particles and transport properties in colloids and ferrocolloids. Recent advances in non-equilibrium statistical physics, such as stochastic resonance, Brownian motors, ratchets and noise-induced transport are also reported. The second part deals with biological systems and polymers. Here, standard simulation methodology to treat diffusional dynamics of multi-protein systems and proton transport in macromolecules is presented. Results of nervous system, spectroscopy of biological membrane models, and Monte Carlo simulations of polymers chains are also discussed. The third part is concerned with granular materials and quantum systems, in particular an effective-medium theory for a random system is reported. Additionally, a comprehensive treatment of spin and charge order in the vortex lattice of the cuprates, both theoretical and experimental, is included. Thermodynamics analogies between Bose-Einstein condensation and black-body radiation are also presented.The last part of the book contains recent developments of certain topics of liquid crystals and molecular fluids, including nonequilibrium thermal light scattering from nematic liquid crystals, relaxation in the kinetic Ising model on the periodic in homogeneous chain, models for thermotropic liquid-crystals, thermodynamic properties of fluids with discrete potentials as well as of fluids determined from the speed of sound effective potentials, and second viral coefficient for polar fluids.
also in: THE KLUWER INTERNATIONAL SERIES ON ASIAN STUDIES IN COMPUTER AND INFORMATION SCIENCE, Volume 2
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].
The study of cooperative phenomena is one of the dominant features of contem porary physics. Outside physics it has grown to a huge field of interdisciplinary investigation, involving all the natural sciences from physics via biology to socio logy. Yet, during the first few decades following the advent of quantum theory, the pursuit of the single particle or the single atom, as the case may be, has been so fascinating that only a small number of physicists have stressed the importance of collective behaviour. One outstanding personality among these few is Professor HERBERT FROHLICH. He has made an enormous contribution to the modern concept of cooperativity and has stimulated a whole generation of physicists. Therefore, it seemed to the editors very appropriate to dedicate a volume on "cooperative phenomena" to him on the occasion of his official retirement from his university duties. Nevertheless, in the course of carrying out this project, the editors have been somewhat amazed to find that they have covered the essentials of contemporary physics and its im pact on other scientific disciplines. It thus becomes clear how much HERBERT FROHLICH has inspired research workers and has acted as a stimulating discussion partner for others. FROHLICH is one of those exceptional scientists who have wor ked in quite different fields and given them an enormous impetus. Unfortunately, the number of scientists of such distinctive personality has been decreasing in our century."
Neural Networks and Fuzzy Systems: Theory and Applications discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems. The book includes performance comparison of neural networks and fuzzy systems using data gathered from real systems. Topics covered include the Hopfield network for combinatorial optimization problems, multilayered neural networks for pattern classification and function approximation, fuzzy systems that have the same functions as multilayered networks, and composite systems that have been successfully applied to real world problems. The author also includes representative neural network models such as the Kohonen network and radial basis function network. New fuzzy systems with learning capabilities are also covered. The advantages and disadvantages of neural networks and fuzzy systems are examined. The performance of these two systems in license plate recognition, a water purification plant, blood cell classification, and other real world problems is compared.
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.
Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
Leading researchers in the area of the origin, evolution and distribution of life in the universe contributed to Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. This volume provides a review of this interdisciplinary field. In 50 chapters many aspects that contribute to exobiology are reviewed by 90 authors. These include: historical perspective of biological evolution; cultural aspects of exobiology, cosmic, chemical and biological evolution, molecular biology, geochronology, biogeochemistry, biogeology, and planetology. Some of the current missions are discussed. Other subjects in the frontier of exobiology are reviewed, such as the search for planets outside the solar system, and the possible manifestation of intelligence in those new potential environments. The SETI research effort is well represented in this general overview of exobiology. This book is the proceedings of the Fifth Trieste Conference on Chemical Evolution that took place in September 1997. The volume is dedicated to the memory of Nobel Laureate Abdus Salam who suggested the initiation of the Trieste conferences on chemical evolution and the origin of life. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin, evolution and distribution of life in the universe.
This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles.
This volume contains the invited lectures and a selection of the contributed papers and posters of the workshop on "Fluctuations and Sensitivity in Nonequil ibrium Systems", held at the Joe C. Thompson Conference Center, Un i vers ity of Texas at Austin, March 12-16, 1984. The workshop dealt with stochastic phenomena and sensi- tivity in nonequilibrium systems from a macroscopic point of view. Durin9 the last few years it has been realized that the role of fluctuations is far less trivial in systems far from equilibrium than in systems under thermodynamic equilibrium condi- tions. It was found that random fluctuations often are a determining factor for the state adopted by macroscopic systems and cannot be regarded as secondary effects of minor importance. Further, nonequilibrium systems are also very sensitive to small systematic changes in their environment. The main aims of the workshop were: i) to provide scientists with an occasion to acquaint themselves with the state of the art in fluctuation theory and sensitivity analysis; ii) to provide a forum for the presentation of recent advances in theory and experiment; iii) to bring toge- ther theoreticians and experimentalists in order to delineate the major open problems and to formulate strategies to tackle these problems. The organizing committee of the workshop consisted of W. Horsthemke, O. K. Konde- pudi, G. Dewel, G. Nicolis, I. Prigogine and L. Reichl.
The analysis of plates and shells under static and dynamic loads is of greatinterest to scientists and engineers both from the theoretical and the practical viewpoint. The Boun- dary Element Method (BEM) has some distinct advantages over domain techniques such as the Finite Difference Method (FDM) and the Finite Element Method (FEM) for a wide class of structuralanalysis problems. This is the first book to deal specifically with the analysis of plates and shells by the BEM and to cover all aspects of their behaviour, and combi- nes tutorial and state-of-the-art articles on the BEM as ap- plied to plates and shells. It aims to inform scientists and engineers about the use and the advantages of this techni- que, the most recent developments in the field and the per- tinent literature for further study.
Thermodynamicsandstatisticalphysicsstudythephysicalproperties(mec- nical, thermal, magnetic, optical, electrical, etc.) of the macroscopic system. The tasks and objects of study in thermodynamics and statistical physics are identical. However, the methods of investigationinto macroscopicsystems are di?erent. Thermodynamics is a phenomenological theory. It studies the properties of bodies, without going into the mechanism of phenomena, i.e., not taking into consideration the relation between the internal structure of substance and phenomena, it generalizes experimental results. As a result of such a g- eralization, postulates and laws of thermodynamics made their appearance. These laws make it possible to ?nd general relations between the di?erent properties of macroscopic systems and the physical events occurring in them. Statisticalphysicsisa microscopic theory.Onthebasisoftheknowledgeof the type of particles a system consists of, the nature of their interaction, and thelawsofmotionoftheseparticlesissuingfromtheconstructionofsubstance, it explains the properties being observedon experiment, and predicts the new properties of systems. Using the laws of classical or quantum mechanics, and alsothe theoryofprobability, itestablishesqualitativelynewstatistical app- priatenesses of the physical properties of macroscopic systems, substantiates the laws of thermodynamics, determines the limits of their applicability, gives the statistical interpretation of thermodynamic parameters, and also works out methods of calculations of their means. The Gibbs method is based on statisticalphysics.Thismethodis themostcanonical.Therefore, inthis book, the exposition of the Gibbs method takes an important pla
A unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, the book develops a general finite dimensional theory of homoclinic jumping, illustrating it with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context, incorporating previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics.
This monograph is devoted to quantum statistical mechanics. It can be regarded as a continuation of the book "Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems" (Gordon & Breach SP, 1989) written together with my colleagues V. I. Gerasimenko and P. V. Malyshev. Taken together, these books give a complete pre sentation of the statistical mechanics of continuous systems, both quantum and classical, from the common point of view. Both books have similar contents. They deal with the investigation of states of in finite systems, which are described by infinite sequences of statistical operators (reduced density matrices) or Green's functions in the quantum case and by infinite sequences of distribution functions in the classical case. The equations of state and their solutions are the main object of investigation in these books. For infinite systems, the solutions of the equations of state are constructed by using the thermodynamic limit procedure, accord ing to which we first find a solution for a system of finitely many particles and then let the number of particles and the volume of a region tend to infinity keeping the density of particles constant. However, the style of presentation in these books is quite different.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
This sixth Volume of the International Workshop on Instabilities and Nonequilibrium Structures is dedicated to the memory of my friend Walter Zeller, Professor of the Universidad C'at6lica df' Valparaiso and Vice-Director of the Workshop. Walter Zeller was much more than an organizer of this meeting: his enthusiasm, dedication and critical views were many times the essential ingredients to continue with a task which in occasions faced difficulties and incomprehensiolls. It is in great part due to him that the workshop has adquired to-day tradition. maturity and international recognition. This Volume should have been coedited by Walter and it is with df'ep emotion that I learned that his disciples Javier Martinez and Rolando Tiemann wanted as a last hommage to their Professor and friend to coedit tfus book. No me seria posible terminal' estas lineas sin pensar en la senora Adriana Gamonal de Zelln. qUf' ella encuentre en este libro la admiraci6n y reconocimiento hacia su marido de quiPIlf's [l\Prall sus discipulos, colegas y amigos. |
![]() ![]() You may like...
Build Your Own Blockchain - A Practical…
Daniel Hellwig, Goran Karlic, …
Hardcover
R1,044
Discovery Miles 10 440
Cryptography - Theory and Practice
Douglas Robert Stinson, Maura Paterson
Paperback
R1,549
Discovery Miles 15 490
Heterogeneous Cyber Physical Systems of…
Ioannis Papaefstathiou, Alkis Hatzopoulos
Hardcover
Blockchain 2035 - The Digital DNA of…
Andrew D Knapp, Jared C Tate
Hardcover
R1,523
Discovery Miles 15 230
Limitations and Future Applications of…
Neeraj Kumar, Alka Agrawal, …
Hardcover
R6,692
Discovery Miles 66 920
Lattice-Based Public-Key Cryptography in…
Sujoy Sinha Roy, Ingrid Verbauwhede
Hardcover
R1,644
Discovery Miles 16 440
|