![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
What are motor abilities of Olympic champions? What are essential psyc- logical characteristics of Mark Spitz, Carl Lewis and Roger Federer? How to discover and maximally develop motor intelligence? How to develop - domitable will power of Olympic champions? What are the secrets of sel- tion for the future Olympic champions? Does for every sport exist a unique model of an Olympic champion? This book gives a modern scienti?c answers to the above questions. Its purpose is to give you the answer to everything you ever wanted to ask about sport champions, but didn't know who or how to ask. In particular, the purpose of this book is to give you the answer to eve- thing you ever wanted to ask about advanced tennis, but didn't know who or how to ask. Its aim is to dispel classical myths of a "biomechanically sound" serve, forehand, and backhand, as well as provide methods for developing superior tennis weapons, a lightning-fast game, and unrivaled mental speed and strength - essential qualities of a future tennis champion.
Hydrogen can behave as an alkaline metal or a halogen and can react with nearly all elements of the periodic table. This explains the large number of metal hydrides. Since T. Graham's first observation of the absorption of hydrogen in palladium in 1866 the behaviour of hydrogen in metals has been studied very extensively. The interest was motivated by the possible application of metal-hydrogen systems in new technologies (e.g., moderator material in nuclear fission reactors, reversible storage material for thermal energy and large amounts of hydrogen) and by the fact that metal hydrides show very exciting physical properties (e.g., superconductivity, quantum diffusion, order-disorder transitions, phase diagrams, etc.). Many of these properties have been determined for the stable hydrogen isotopes Hand D in various metals. In comparison, very little is known about the behaviour of the ra dioactive isotope tritium in metals. This book is a first attempt to summarize part of the knowledge of tritium gained in the last few years. In addition to the task of presenting the properties of tritium in metals, I have tried to compare these data with those of protium and deuterium. Furthermore, helium-3 is connected inse parably with tritium via the tritium decay. Therefore one chapter of this book is solely devoted to the curious properties of helium in metals caused mainly by its negligible solubility."
What is thermodynamics? What does statistical physics teach us? In the pages of this slim book, we confront the answers. The reader will discover that where thermodynami cs provi des a 1 arge scal e, macroscopi c theory of the ef fects of temperature on physical systems, statistical mechanics provides the microscopic analysis of these effects which, invariably, are the results of thermal disorder. A number of systems in nature undergo dramatic changes in aspect and in their properties when subjected to changes in ambient temperature or pres sure, or when electric or magnetic fields are applied. The ancients already knew that a liquid, a solid, or a gas can represent different states of the same matter. But what is meant by "state"? It is here that the systematic study of magnetic materials has provided one of the best ways of examining this question, which is one of the principal concerns of statistical physics (alias "statistical mechanics") and of modern thermodynamics."
A recent paper on subfactors of von Neumann factors has stimulated much research in von Neumann algebras. It was discovered soon after the appearance of this paper that certain algebras which are used there for the analysis of subfactors could also be used to define a new polynomial invariant for links. Recent efforts to understand the fundamental nature of the new link invariants has led to connections with invariant theory, statistical mechanics and quantum theory. In turn, the link invariants, the notion of a quantum group, and the quantum Yang-Baxter equation have had a great impact on the study of subfactors. Our subject is certain algebraic and von Neumann algebraic topics closely related to the original paper. However, in order to promote, in a modest way, the contact between diverse fields of mathematics, we have tried to make this work accessible to the broadest audience. Consequently, this book contains much elementary expository material.
The aim of this book is to give a unified and critical account of the fundamental aspects of liquid crystals. Preference is given to discussing the assumptions made in developing theories and analyzing experimental data rather than to attempting to compile all the latest results. The book has four parts. Part I is quite descriptive in character and gives a general overview of the various liquid crystalline phases. Part II deals with the macroscopic continuum theory of liquid crystals and gives a systematic development of the theory from a tensorial point of view thus emphasizing the relevant symmetries. Part III concentrates on experiments that provide microscopic information on the orientational behaviour of the molecules. Finally Part IV discusses the theory of the various phases and their attendant phase transitions from both a Landau and a molecular-statistical point of view. Simplifying the various models as far as possible, it critically examines the merits of a molecular-statistical approach.
Ecosystems, the human brain, ant colonies, and economic networks are all complex systems displaying collective behaviour, or emergence, beyond the sum of their parts. Complexity science is the systematic investigation of these emergent phenomena, and stretches across disciplines, from physics and mathematics, to biological and social sciences. This introductory textbook provides detailed coverage of this rapidly growing field, accommodating readers from a variety of backgrounds, and with varying levels of mathematical skill. Part I presents the underlying principles of complexity science, to ensure students have a solid understanding of the conceptual framework. The second part introduces the key mathematical tools central to complexity science, gradually developing the mathematical formalism, with more advanced material provided in boxes. A broad range of end of chapter problems and extended projects offer opportunities for homework assignments and student research projects, with solutions available to instructors online. Key terms are highlighted in bold and listed in a glossary for easy reference, while annotated reading lists offer the option for extended reading and research.
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level-with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework."
A good deal of the material presented in this book has been prepared by top experts in the field lecturing in January 1987 at the Winter School on Solitons in Tiruchirapalli, India. The lectures begin at an elementary level but go on to include even the most recent developments in the field. The book makes a handy introduction to the various facets of the soliton concept, and will be useful both to newcomers to the field and to researchers who are interested in developments in new branches of physics and mathematics
th This volume contains the proceedings of the X Congress of the Interna- tional Association of Mathematical Physics, held at the University of Leipzig from 30 July until 9 August 1991. There were more than 400 participants, from 29 countries, making it a truly international gathering. The congress had the support of the Deutsche Forschungsgemeinschaft, the European Economic Community, the International Association of Math- ematical Physics, the International Mathematical Union and the Interna- tional Union of Pure and Applied Physics. There were also sponsors from in- dustry and commerce: ATC Mann, Deutsche Bank AG, Miele & Cie GmbH, NEC Deutschland GmbH, Rank Xerox, Siemens AG and Stiftungsfonds IBM Deutschland. On behalf of the congress participants and the members of the International Association of Mathematical Physics, I would like to thank all these organisations for their very generous support. The congress took place under the auspices of the Ministerp6isident des Freistaates Sachsen, K. Biedenkopf. The conference began with an address by A. Uhlmann, Chairman of the Local Organizing Committee. This was followed by speeches of welcome from F. Magirius, City President of Leipzig; C. Weiss, Rector of the Uni- versity of Leipzig; and A. Jaffe, President of the International Association of Mathematical Physics.
Open nonlinear systems are capable of self-organization in space and time. This realization constitutes a major breakthrough of modern science, and is currently at the origin of explosive developments in chemistry, physics and biology. Observations and numerical computations of nonlinear systems surprise us by their inexhaustible and sometimes nonintuitive variety of structures with different shapes and functions. But as well as variety one finds on closer inspection that nonlinear phenomena share universal aspects of pattern formation in time and space. These similarities make it possible to bridge the gap between inanimate and living matter at various levels of complexity, in both theory and experiment. This book is an account of different approaches to the study of this pattern formation. The universality of kinetic, thermodynamic and dimensional approaches is documented through their application to purely mathematical, physical and chemical systems, as well as to systems in nature: biochemical, cellular, multicellular, physiological, neurophysiological, ecological and economic systems. Hints given throughout the book allow the reader to discover how to make use of the principles and methods in different fields of research, including those not treated explicitly in the book.
Principles of Statistical Radiophysics is concerned with the theory of random func tions (processes and fields) treated in close association with a number of applications in physics. Primarily, the book deals with radiophysics in its broadest sense, i.e., l viewed as a general theory of oscillations and waves of any physical nature * This translation is based on the second (two-volume) Russian edition. It appears in four volumes: 1. Elements of Random Process Theory 2. Correlation Theory of Random Processes 3. Elements of Random Fields 4. Wave Propagation Through Random Media. The four volumes are, naturally, to a large extent conceptually interconnected (being linked, for instance, by cross-references); yet for the advanced reader each of them might be of interest on its own. This motivated the division of the Principles into four separate volumes. The text is designed for graduate and postgraduate students majoring in radio physics, radio engineering, or other branches of physics and technology dealing with oscillations and waves (e.g., acoustics and optics). As a rule, early in their career these students face problems involving the use of random functions. The book pro vides a sound basis from which to understand and solve problems at this level. In addition, it paves the way for a more profound study of the mathematical theory, should it be necessary2. The reader is assumed to be familiar with probability theory.
The four-week period fran May 20 to June 16, 1984 was an intensive period of advanced study on the foundations and frontiers of nonequili brium statistical physics (NSP). During the first two weeks of this period, an advanced-study course on the "Foundations of NSP" was con ducted in Albuquerque under the sponsorship of the University of New Mexico Center for High-Technology Materials. This was followed by a two-week NATO Advanced Study Insti tute on the "Frontiers of NSP" in Santa Fe under the same directorship. Many Students attended both meetings. This book comprises proceedings based on those lectures and covering a broad spectrum of topics in NSP ranging fran basic problems in quantum measurement theory to analogies between lasers and Darwinian evolution. The various types of quantum distribution functions and their uses are treated by several authors. other tools of NSP, such as Langevin equations, Fokker-Planck equations, and master equations, are developed and applied to areas such as laser physics, plasma physics, Brownian motion, and hydrodynamic instabilities. The properties and experimental detection of squeezed states and antibunching are described, as well as experimental tests of the violation of Bell's inequality. Information theory, mean-field theory, reservoir theory, entropy maximization, and even a novel nonlinear generalization of quantum mechanics are used to discuss nonequilibrium phenanena and the approach toward thermodynamic equilibrium."
We read in order to know we are not alone, I once heard, and perhaps it could also be suggested that we write in order not to be alone, to endorse, to promote continuity. The idea for this book took about ten years to materialize, and it is the author's hope that its content will constitute the beginning of further explorations beyond current horizons. More speci cally, this book appeals to the reader to engage upon and persevere with a journey, moving through the less well explored territories in the evolution of the very early universe, and pushing towards new landscapes. P- haps, during or after consulting this book, this attitude and this willingness will be embraced by someone, somewhere, and this person will go on to enrich our quantum cosmological description of the early universe, by means of a clearer supersymm- ric perspective. It is to these creative and inquisitive 'young minds' that the book is addressed. The reader will not therefore nd in this book all the answers to all the problems regarding a supersymmetric and quantum description of the early universe, and this remark is substantiated in the book by a list of unresolved and challenging problems, itself incomplete.
'Et moi, ..., si j'avait su comment en revenIT, One service mathematics has rendered the je n'y serais point allt\.' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. :; 'One service logic has rendered com- puter science .. :; 'One service category theory has rendered mathematics .. :. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Material particles, electrons, atoms, molecules, interact with one another by means of electromagnetic forces. That is, these forces are the cause of their being combined into condensed (liquid or solid) states. In these condensed states, the motion of the particles relative to one another proceeds in orderly fashion; their individual properties as well as the electric and magnetic dipole moments and the radiation and absorption spectra, ordinarily vary little by comparison with their properties in the free state. Exceptiotls are the special so-called collective states of condensed media that are formed under phase transitions of the second kind. The collective states of matter are characterized to a high degree by the micro-ordering that arises as a result of the interaction between the particles and which is broken down by chaotic thermal motion under heating. Examples of such pheonomena are the superfluidity of liquid helium, and the superconductivity and ferromagnetism of metals, which exist only at temperatures below the critical temperature. At low temperature states the particles do not exhibit their individual characteristics and conduct themselves as a single whole in many respects. They flow along capillaries in ordered fashion and create an undamped current in a conductor or a macroscopic magnetic moment. In this regard the material acquires special properties that are not usually inherent to it.
"Et moi, ..., si j'avait Sll comment en revenir. One sennce mathematics has rendered the human race. It has put common sense back je n'y serais point alle.' Jules Verne whe," it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be smse'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' ltre of this series."
This fascinating work is devoted to the fundamental phenomenon in physics - synchronization that occurs in coupled non-linear dissipative oscillators. Examples of such systems range from mechanical clocks to population dynamics, from the human heart to neural networks. The main purpose of this book is to demonstrate that the complexity of synchronous patterns of real oscillating systems can be described in the framework of the general approach, and the authors study this phenomenon as applied to oscillations of different types, such as those with periodic, chaotic, noisy and noise-induced nature.
The apparent contradiction of the results of the Fermi-Pasta-Ulam experiment conducted in 1953 and 1954 with the hypothesis that essentially any nonlinearity would lead to a system exhibiting ergodic behaviour has become known as the Fermi-Pasta-Ulam Problem. This volume reviews the current understanding of this paradox without trying to force coherence on differing perspectives on the same problem by various groups or approaches. The contributions comprise studies of one-dimensional chains, descriptions of numerical methods, heuristic theories, addressing the long standing and controversial problem of distinguishing chaos from noise in signal analysis, metastability, the relation of the FPU motions with the integrable equations, approaches using methods of perturbation theory and the proof of the applicability of KAM theory in FPU chains with energy very close to a minimum. For the convenience of the reader the original work of FPU is reprinted in an appendix. The order of the contributions reflects the aim of leading the interested but inexperienced reader through gradual understanding, starting from general analysis, and proceeding towards more specialized topics."
This monograph addresses the systematic representation of the methods of analysis developed by the authors as applied to such systems. Particular features of dynamic processes in such systems are studied. Special attention is given to an analysis of different resonant phenomena taking unusual and diverse forms.
Half a century ago, S. Chandrasekhar wrote these words in the preface to his 1 celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... ] Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N" 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).
Complexity, Cognition and the City aims at a deeper understanding of urbanism, while invoking, on an equal footing, the contributions both the hard and soft sciences have made, and are still making, when grappling with the many issues and facets of regional planning and dynamics. In this work, the author goes beyond merely seeing the city as a self-organized, emerging pattern of some collective interaction between many stylized urban "agents" - he makes the crucial step of attributing cognition to his agents and thus raises, for the first time, the question on how to deal with a complex system composed of many interacting complex agents in clearly defined settings. Accordingly, the author eventually addresses issues of practical relevance for urban planners and decision makers. The book unfolds its message in a largely nontechnical manner, so as to provide a broad interdisciplinary readership with insights, ideas, and other stimuli to encourage further research - with the twofold aim of further pushing back the boundaries of complexity science and emphasizing the all-important interrelation of hard and soft sciences in recognizing the cognitive sciences as another necessary ingredient for meaningful urban studies.
Half a century ago, S. Chandrasekhar wrote these words in the preface to his l celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... J Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N " 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).
Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
Written for an interdisciplinary readership, this book is a practical guide to the fascinating world of solitons. The author approaches the subject from the standpoint of applications in optics, hydrodynamics, and electrical and chemical engineering. This third edition has been thoroughly revised and updated.
This monograph provides a new account of justified inference as a cognitive process. In contrast to the prevailing tradition in epistemology, the focus is on low-level inferences, i.e., those inferences that we are usually not consciously aware of and that we share with the cat nearby which infers that the bird which she sees picking grains from the dirt, is able to fly. Presumably, such inferences are not generated by explicit logical reasoning, but logical methods can be used to describe and analyze such inferences. Part 1 gives a purely system-theoretic explication of belief and inference. Part 2 adds a reliabilist theory of justification for inference, with a qualitative notion of reliability being employed. Part 3 recalls and extends various systems of deductive and nonmonotonic logic and thereby explains the semantics of absolute and high reliability. In Part 4 it is proven that qualitative neural networks are able to draw justified deductive and nonmonotonic inferences on the basis of distributed representations. This is derived from a soundness/completeness theorem with regard to cognitive semantics of nonmonotonic reasoning. The appendix extends the theory both logically and ontologically, and relates it to A. Goldman's reliability account of justified belief. This text will be of interest to epistemologists and logicians, to all computer scientists who work on nonmonotonic reasoning and neural networks, and to cognitive scientists. |
You may like...
Animals and Plants of the Ancient Maya…
Victoria Schlesinger
Paperback
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
New Results in Numerical and…
Andreas Dillmann, Gerd Heller, …
Hardcover
R5,289
Discovery Miles 52 890
|