![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Disordered magnetic systems enjoy non-trivial properties which are different and richer than those observed in their pure, non-disordered counterparts. These properties dramatically affect the thermodynamic behaviour and require specific theoretical treatment. This 2006 book deals with the theory of magnetic systems in the presence of frozen disorder, in particular paradigmatic and well-known spin models such as the Random Field Ising Model and the Ising Spin Glass. This is a unified presentation using a field theory language which covers mean field theory, dynamics and perturbation expansion within the same theoretical framework. Particular emphasis is given to the connections between different approaches such as statics vs. dynamics, microscopic vs. phenomenological models. The book introduces some useful and little-known techniques in statistical mechanics and field theory. This book will be of great interest to graduate students and researchers in statistical physics and basic field theory.
In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems.
This monograph is a comprehensive and cohesive exposition of power-law statistics. Following a bottom-up construction from a foundational bedrock - the power Poisson process - this monograph presents a unified study of an assortment of power-law statistics including: Pareto laws, Zipf laws, Weibull and Frechet laws, power Lorenz curves, Levy laws, power Newcomb-Benford laws, sub-diffusion and super-diffusion, and 1/f and flicker noises. The bedrock power Poisson process, as well as the assortment of power-law statistics, are investigated via diverse perspectives: structural, stochastic, fractal, dynamical, and socioeconomic. This monograph is poised to serve researchers and practitioners - from various fields of science and engineering - that are engaged in analyses of power-law statistics.
Energy is at the heart of physics and of huge importance to society and yet no book exists specifically to explain it, and in simple terms. In tracking the history of energy, this book is filled with the thrill of the chase, the mystery of smoke and mirrors, and presents a fascinating human-interest story. Moreover, following the history provides a crucial aid to understanding: this book explains the intellectual revolutions required to comprehend energy, revolutions as profound as those stemming from Relativity and Quantum Theory. Texts by Descartes, Leibniz, Bernoulli, d'Alembert, Lagrange, Hamilton, Boltzmann, Clausius, Carnot and others are made accessible, and the engines of Watt and Joule are explained. Many fascinating questions are covered, including: - Why just kinetic and potential energies - is one more fundamental than the other? - What are heat, temperature and action? - What is the Hamiltonian? - What have engines to do with physics? - Why did the steam-engine evolve only in England? - Why S=klogW works and why temperature is IT. Using only a minimum of mathematics, this book explains the emergence of the modern concept of energy, in all its forms: Hamilton's mechanics and how it shaped twentieth-century physics, and the meaning of kinetic energy, potential energy, temperature, action, and entropy. It is as much an explanation of fundamental physics as a history of the fascinating discoveries that lie behind our knowledge today.
The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.
Dynamics of an open system interacting with theenvironment considered as a thermostate may be formulatedin terms of a master equation with an integral operator allowing for the relaxation process, [Zwanzig 1960]. In some part- ular cases this operator hasashort-lastingkernel that enables one to consider therelaxation as a Markovian process and to obtainthe master equation inthe Lindblad form, [Lindblad 1976 (a)]. In some situations the memory effects become, however, important and the dynamics of thesystem gets much more involved, [Barnett 2001]. A similar situation arises inthe case where a set of consecutive or continuous measurements is performed. The purpose of this article is to consider a situation where some simplification of the generalform of the master equation with memory isstill possibleand the result isasimpler master equation. In particular, we consider the case of a dynamic system c- pled to a measured ancilla via a nondemolition interaction, [Caves 1980]. This simplifies the consideration essentiallywhereas providing an important special case inwhich the energy of the dynamic part is conserved. We consider a composite quantum system consisting of a dynamic part - teracting with an ancillary part, the latter being subject to repeated projective measurements. The entire quantum system is assumed to evolve unitarily d- ing time ? t between the measurements. As a specific example, we analyze a harmonic oscillator coupledtoatwo-level ancillathat issubject to measu- ments.
Computer science and physics have been closely linked since the
birth of modern computing. In recent years, an interdisciplinary
area has blossomed at the junction of these fields, connecting
insights from statistical physics with basic computational
challenges. Researchers have successfully applied techniques from
the study of phase transitions to analyze NP-complete problems such
as satisfiability and graph coloring. This is leading to a new
understanding of the structure of these problems, and of how
algorithms perform on them.
From the reviews: ..". Each chapter of the book is followed by a notes section and by a problems section. There are over 100 problems, many of which have hints. The book may be recommended as a text, it provides a completly self-contained reading ..." --S. Pogosian in Zentralblatt f r Mathematik
Mesoscopic physics deals with effects at submicron and nanoscales where the conventional wisdom of macroscopic averaging is no longer applicable. A wide variety of new devices have recently evolved, all extremely promising for major novel directions in technology, including carbon nanotubes, ballistic quantum dots, hybrid mesoscopic junctions made of different type of normal, superconducting and ferromagnetic materials. This, in turn, demands a profound understanding of fundamental physical phenomena on mesoscopic scales. As a result, the forefront of fundamental research in condensed matter has been moved to the areas where the interplay between electron-electron interactions and quantum interference of phase-coherent electrons scattered by impurities and/or boundaries is the key to such understanding. An understanding of decoherence as well as other effects of the interactions is crucial for developing future electronic, photonic and spintronic devices, including the element base for quantum computation.
Leading scientists discuss the most recent physical and experimental results in the physics of Bose-Einstein condensate theory, the theory of nonlinear lattices (including quantum and nonlinear lattices), and nonlinear optics and photonics. Classical and quantum aspects of the dynamics of nonlinear waves are considered. The contributions focus on the Gross-Pitaevskii equation and on the quantum nonlinear Schr dinger equation. Recent experimental results on atomic condensates and hydrogen bonded systems are reviewed. Particular attention is given to nonlinear matter waves in periodic potential.
This monograph, suitable for use as an advanced text, presents the statistical mechanics of solids from the perspective of the material properties of the solid state. The statistical mechanics are developed as a tool for understanding properties and each chapter includes useful exercises to illustrate the topics covered. Topics discussed include the theory of the harmonic crystal, the theory of free electrons in metal and semiconductors, electron transport, alloy ordering, surfaces and polymers.
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Neel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edition presents expanded sections on phase transitions, liquid crystals and magnetic systems, for all problems detailed solutions are provided. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge.
The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.
The Tenth International Symposium on Continuum Models and Discrete Systems (CMDSIO) took place at the Shoresh Holiday Complex in Shoresh, Israel, near the Capital City Jerusalem, from 30 June until 4 July 2003. The previous symposia in this series were: CMDS 1 (Kielce, Poland, 1975) CMDS2 (Mont Gabriel, Canada, 1977) CMDS3 (Freudenstadt, German Federal Republic, 1979) CMDS4 (Stockholm, Sweden, 1981) CMDS5 (Nottingham, England, 1985) CMDS6 (Dijon, France, 1989) CMDS7 (Paderborn, Germany, 1992) CMDS8 (Varna, Bulgaria, 1995) CMDS9 (Istanbul, Turkey, 1998) As in the previous symposia, participation was by invitation from the Inter- national Scientific Committee. Participants were chosen from a list of recom- mendations of the committee members, as well as from applications following advertisement of the symposium on the internet and in email messages to po- tential participants. The members of the International Scientific Committee were: Karl-Heinz Anthony CMDS7 Chairman (University ofPaderborn, Germany) David J. Bergman, Conference Chairman (Tel Aviv University, Israel) Bikas K. Chakrabatii (Saha Institute of Nuclear Physics Calcutta, West Bengal, India) Hans Jurgen Herrmann (University of Stuttgart, Germany; and ESPCI, Paris, France) Esin Inan, CMDS9 Chairwoman (Istanbul Technical University, Istanbul, Turkey) Dominique Jeulin (ENSMP, Fontainebleau, France) Mark Kachanov (Tufts University, Boston, MA, USA) David Kinderlehrer (Carnegie-Mellon University, Pittsburgh, PA, USA) Arnold M. Kosevich (B. Verkin Institute for Low Temperature Physics, Khat"kov, Ukraine) Valery M. Levin (Petrozavodsk State University, Petrozavodsk, Russia) Konstantin Z.
The 17 chapters of this book grew out of the tutorial lectures given by leading world-class experts at the NATO Advanced Research Workshop "Effects of Space Weather on Technology Infrastructure" - ESPRIT, which was held in Rhodes on March 25-29, 2004. All manuscripts were refereed and subsequently meticulously edited by the editor to ensure the highest quality for this monograph. I owe particular thanks to the lecturers of the ESPRIT Advanced Research Workshop for producing these excellent tutorial reviews, which convey the essential knowledge and the latest advances in our field. Due to the breadth, extensive literature citations and quality of the reviews we expect this publication to serve extremely well as a reference book. Multimedia material referring to individual chapters of the book is accessible on the accompanying CD. The aim of ESPRIT was to assess existing knowledge and identify future actions regarding monitoring, forecasting and mitigation of space weather induced malfunction and damage of vital technological systems operating in space and on the ground.
This book presents a complete encyclopedia of superconducting fluctuations, summarizing the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.
There exists a wide variety of patterns in nature, from inert
matter such as crystalline dendrites and flames, to filamentous
fungi and neurones in the living world. Their structural evolution
during growth can be theoretically modeled in order to predict the
shape of their forms, their dimensions and their growth rate. New
Visions on Growth and Form aims at answering such questions by
employing different theoretical approaches and providing a critical
appraisal.
This graduate-level text gives a self-contained exposition of fundamental topics in modern equilibrium and nonequilibrium statistical thermodynamics. The text follows a balanced approach between the macroscopic (thermodynamic) and microscopic (statistical) points of view. The first half of the book deals with equilibrium thermodynamics and statistical mechanics. In addition to standard subjects, the reader will find a detailed account of broken symmetries, critical phenomena and the renormalization group, as well as an introduction to numerical methods. The second half of the book is devoted to nonequilibrium phenomena, first following a macroscopic approach, with hydrodynamics as an important example. Kinetic theory receives a thorough treatment through analysis of the Boltzmann-Lorentz model and the Boltzmann equation. The book concludes with general nonequilibrium methods such as linear response, projection method and the Langevin and Fokker-Planck equations, including numerical simulations. This advanced textbook will be of interest to graduate students and researchers in physics.
Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.
This unique monograph introduces an important new area of control system research and presents some new methods for solving some typical problems in the field of sandwich nonlinear systems. Sandwiched nonsmooth nonlinearities such as dead-zone, hysteresis and backlash between dynamic blocks are presented, as well as continuous-time control designs. A framework for hybrid control is developed that is used to design control schemes for different cases of the control problem with required modifications. Friction compensation is addressed for systems with sandwiched friction along with sandwiched dynamics. An open problem of the control of sandwich nonlinear systems with actuator failures is introduced by a control design for an illustrative case.
Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a manner that not only appeals to the entropy specialist but also makes them accessible to the nonspecialist looking for an overview of the field. This book contains fourteen contributions by leading scientists in their fields. The content covers such topics as quantum thermodynamics, nonlinear processes, gravitational and irreversible thermodynamics, the thermodynamics of Taylor dispersion, higher order transport, the mesoscopic theory of liquid crystals, simulated annealing, information and biological aspects, global energy, photovoltaics, heat and mass transport and nonlinear electrochemical systems. Audience: This work will be of value to physicists, chemists, biologists and engineers interested in the theory and applications of entropy and its generation.
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems."
Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.
La meccanica statistica (MS) nell'insegnamente universitario e' spesso confinata in una posizione itermedia tra le tre grandi aree della fisica teorica, la fisica della materia e la fisica matematica. In genere vengono discussi gli aspetti "pratici," di supporto alla fisica della materia, che pur importanti non esauriscono la rilevanza concettule della meccanica statistica. Esistono molti ottimi libri (Huang, Landau-Lifsits, Chandler, Peliti etc) che trattano in modo dettagliato gli aspetti tecnici della meccanica statistica. Lo scopo del nostro libro non e' quello di presentare metodi (esatti ed approssimati) per determinare le proprieta termodinamiche a partire dalle interazioni microscopiche, quanto discutere alcuni aspetti concettuali della meccanica statistica che sono spesso poco trattati. In particolare: 1- Il ruolo dell'ipotesi ergodica 2- L'importanza dei tanti gradi di liberta per le leggi statistiche 3- L'interpretazione degli ensemble in termini di probabilita; 4- L'irreversibilita macroscopica 5- L'utilizzo della meccanica statistica per provare l'ipotesi atomistica e la determinazione delle scale (spaziali ed egernetiche) del mondo microscopico."
|
You may like...
A Golden Treasury for the Children of…
Carl Heinrich Von Bogatzky
Paperback
R570
Discovery Miles 5 700
|