![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
Complexity science has been a source of new insight in physical and social systems and has demonstrated that unpredictability and surprise are fundamental aspects of the world around us. This book is the outcome of a discussion meeting of leading scholars and critical thinkers with expertise in complex systems sciences and leaders from a variety of organizations, sponsored by the Prigogine Center at The University of Texas at Austin and the Plexus Institute, to explore strategies for understanding uncertainty and surprise. Besides contributions to the conference, it includes a key digest by the editors as well as a commentary by the late nobel laureate Ilya Prigogine, "Surprises in half of a century." The book is intended for researchers and scientists in complexity science, as well as for a broad interdisciplinary audience of both practitioners and scholars. It will well serve those interested in the research issues and in the application of complexity science to physical and social systems.
This lecture notes in physics volume mainly focuses on the semi classical and qu- tum aspects of percolation and breakdown in disordered, composite or granular s- tems. The main reason for this undertaking has been the fact that, of late, there have been a lot of (theoretical) work on quantum percolation, but there is not even a (single) published review on the topic (and, of course, no book). Also, there are many theoretical and experimental studies on the nonlinear current-voltage characteristics both away from, as well as one approaches, an electrical breakdown in composite materials. Some of the results are quite intriguing and may broadly be explained utilising a semi classical (if not, fully quantum mechanical) tunnelling between - cron or nano-sized metallic islands dispersed separated by thin insulating layers, or in other words, between the dangling ends of small percolation clusters. There have also been several (theoretical) studies of Zener breakdown in Mott or Anderson in- lators. Again, there is no review available, connecting them in any coherent fashion. A compendium volume connecting these experimental and theoretical studies should be unique and very timely, and hence this volume. The book is organised as follows. For completeness, we have started with a short and concise introduction on classical percolation. In the ?rst chapter, D. Stauffer reviews the scaling theory of classical percolation emphasizing (biased) diffusion, without any quantum effects. The next chapter by A. K.
Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
Thermodynamics is not the oldest of sciences. Mechanics can make that claim. Thermodynamicsisaproductofsomeofthegreatestscienti?cmindsofthe19thand 20th centuries. But it is suf?ciently established that most authors of new textbooks in thermodynamics ?nd it necessary to justify their writing of yet another textbook. I ?nd this an unnecessary exercise because of the centrality of thermodynamics as a science in physics, chemistry, biology, and medicine. I do acknowledge, however, that instruction in thermodynamics often leaves the student in a confused state. My attempt in this book is to present thermodynamics in as simple and as uni?ed a form as possible. As teachers we identify the failures of our own teachers and attempt to correct them. Although I personally acknowledge with a deep gratitude the appreciation for thermodynamics that I found as an undergraduate, I also realize that my teachers did not convey to me the sweeping grandeur of thermodynamics. Speci?cally the s- plicity and the power that James Clerk Maxwell found in the methods of Gibbs were not part of my undergraduate experience. Unfortunately some modern authors also seem to miss this central theme, choosing instead to introduce the thermodynamic potentials as only useful functions at various points in the development.
This volume contains the invited papers presented at the 9th International C- ference "Dynamical Systems - Theory and Applications" held in ?od ' z, ' Poland, December 17-20, 2007 dealing with nonlinear dynamical systems. The conf- encegatheredanumerousgroupofscientistsandengineers,whodealwithwidely understoodproblemsofdynamicsmetalsoinengineeringanddailylife. Organizationof the conferencewould nothavebeen possiblewithouta great effortofthestaffoftheDepartmentofAutomaticsandBiomechanicsoftheTech- calUniversityof?od ' z. ' Thepatronageovertheconferencehasbeentakenbythef- lowingscienti?cinstitutions:MechanicsandMachineDynamicsCommitteesofthe PolishAcademyofSciences,PolishSocietyofTheoreticalandAppliedMech- ics,PolishAssociationforComputationalMechanics,andTechnicalCommitteeof NonlinearOscillationsofIFToMM. The ?nancial support has been given by the Department of Education at the ?'odz' City Hall, Ministry of National Education and the Polish Association for ComputationalMechanics. We welcomednearly100personsfrom13countriesallovertheworld.They decidedto share the results of their researchandmanyyears of experiencein a disciplineofdynamicalsystemsbysubmittingmanyinterestingpapers. TheScienti?cCommitteeincludesthefollowingmembers:IgorV.Andrianov- Aachen;JanAwrejcewicz -?od ' z; ' Jose M. Balthazar- Rio Claro;Denis Bla- more- Newark; Iliya Blekhman - Sankt Petersburg;Roman Bogacz - Warsaw; TadeuszBurczyns ' ki-Gliwice;DickvanCampen-Eindhoven;Czes?awCempel- Poznan';LotharGaul- Stuttgart;Jozef ' Giergiel-Cracow;Katica Hedrih-Nis; ? Janusz Kowal - Cracow; Vadim A. Krysko - Saratov; W?odzimierz Kurnik - Warsaw; Claude-Henri Lamarque - Lyon; Nuno M. Maia - Lisbon; Leonid I.
What are motor abilities of Olympic champions? What are essential psyc- logical characteristics of Mark Spitz, Carl Lewis and Roger Federer? How to discover and maximally develop motor intelligence? How to develop - domitable will power of Olympic champions? What are the secrets of sel- tion for the future Olympic champions? Does for every sport exist a unique model of an Olympic champion? This book gives a modern scienti?c answers to the above questions. Its purpose is to give you the answer to everything you ever wanted to ask about sport champions, but didn't know who or how to ask. In particular, the purpose of this book is to give you the answer to eve- thing you ever wanted to ask about advanced tennis, but didn't know who or how to ask. Its aim is to dispel classical myths of a "biomechanically sound" serve, forehand, and backhand, as well as provide methods for developing superior tennis weapons, a lightning-fast game, and unrivaled mental speed and strength - essential qualities of a future tennis champion.
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies - such as semiconductors or lasers - are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
The present third edition of The Statistical Mechanics of Financial Markets is published only four years after the ?rst edition. The success of the book highlights the interest in a summary of the broad research activities on the application of statistical physics to ?nancial markets. I am very grateful to readers and reviewers for their positive reception and comments. Why then prepare a new edition instead of only reprinting and correcting the second edition? The new edition has been signi?cantly expanded, giving it a more pr- tical twist towards banking. The most important extensions are due to my practical experience as a risk manager in the German Savings Banks' As- ciation (DSGV): Two new chapters on risk management and on the closely related topic of economic and regulatory capital for ?nancial institutions, - spectively, have been added. The chapter on risk management contains both the basics as well as advanced topics, e. g. coherent risk measures, which have not yet reached the statistical physics community interested in ?nancial m- kets. Similarly, it is surprising how little research by academic physicists has appeared on topics relating to Basel II. Basel II is the new capital adequacy framework which will set the standards in risk management in many co- tries for the years to come. Basel II is responsible for many job openings in banks for which physicists are extemely well quali?ed. For these reasons, an outline of Basel II takes a major part of the chapter on capital.
Interactions matter. To understand the distributions of plants and animals in a landscape you need to understand how they interact with each other, and with their environment. The resulting networks of interactions make ecosystems highly complex. Recent research on complexity and artificial life provides many new insights about patterns and processes in landscapes and ecosystems. This book provides the first overview of that work for general readers. It covers such topics as connectivity, criticality, feedback, and networks, as well as their impact on the stability and predictability of ecosystem dynamics. With over 60 years of research experience of both ecology and complexity, the authors are uniquely qualified to provide a new perspective on traditional ecology. They argue that understanding ecological complexity is crucial in today's globalized and interconnected world. Successful management of the world's ecosystems needs to combine models of ecosystem complexity with biodiversity, environmental, geographic and socioeconomic information.
Recent years have shown important and spectacular convergences between techniques traditionally used in theoretical physics and methods emerging from modern mathematics (combinatorics, probability theory, topology, algebraic geometry, etc). These techniques, and in particular those of low-dimensional statistical models, are instrumental in improving our understanding of emerging fields, such as quantum computing and cryptography, complex systems, and quantum fluids. This book sets these issues into a larger and more coherent theoretical context than is currently available. For instance, understanding the key concepts of quantum entanglement (a measure of information density) necessitates a thorough knowledge of quantum and topological field theory, and integrable models. To achieve this goal, the lectures were given by international leaders in the fields of exactly solvable models in low dimensional condensed matter and statistical physics.
This textbook gives a detailed explanation of waves and oscillations in classical physics. These classical phenomena are dealt with at a more advanced level than is customary for second-year courses. All aspects of classical wave physics are presented, including the mathematical and physical basis needed for extended understanding. Finally several chapters are devoted to important topics in current wave physics. Special attention is given to nonlinear waves, solitons, chaotic behavior and associated phenomena. The new edition contains improvements such as full development of Greens functions, a broadening of the treatment of wave mechanics and a closer integration with classical mechanics, plus more examples and problems.
Juval Portugali The notion of complex artificial environments (CAE) refers to theories of c- plexity and self-organization, as well as to artifacts in general, and to artificial - vironments, such as cities, in particular. The link between the two, however, is not trivial. For one thing, the theories of complexity and self-organization originated in the "hard" science and by reference to natural phenomena in physics and bi- ogy. The study of artifacts, per contra, has traditionally been the business of the "soft" disciplines in the humanities and social sciences. The notion of "complex artificial environments" thus implies the supposition that the theories of compl- ity and self-organization, together with the mathematical formalisms and meth- ologies developed for their study, apply beyond the domain of nature. Such a s- st position raises a whole set of questions relating to the nature of 21 century cities and urbanism, to philosophical issues regarding the natural versus the artificial, to the methodological legitimacy of interdisciplinary transfer of theories and me- odologies and to the implications that entail the use of sophisticated, state-of-t- art artifacts such as virtual reality (VR) cities and environments. The three-day workshop on the study of complex artificial environments that took place on the island of San Servolo, Venice, during April 1-3, 2004, was a gathering of scholars engaged in the study of the various aspects of CAE.
Coherent Dynamics of Complex Quantum Systems is aimed at senior-level undergraduate students in the areas of atomic, molecular, and laser physics, physical chemistry, quantum optics and quantum informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elaborated technique of the adjacent fields.
This book, in the broadest sense, is an application of quantum
mechanics and statistical mechanics to the field of magnetism.
Under certain well described circumstances, an immensely large
number of electrons moving in the solid state of matter will
collectively produce permanent magnetism. Permanent magnets are of
fundamental interest and magnetic materials are also of great
practical importance as they provide a large field of technological
applications. The physical details describing the many electron
problem of magnetism are presented in this book on the basis of the
local density functional approximation. The emphasis is on
realistic magnets, for which the equations describing the many
electron problem can only be solved by using computers. The great,
recent and continuing improvements of computers are, to a large
extent, responsible for the progress in the field. Along with a
detailed introduction to the density functional theory, this book
presents representative computational method and proves the reader
with a complete computer program for the determination of the
electronic structure of a magnet on a PC.
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
From the hydrophobic effect to protein-ligand binding, statistical physics is relevant in almost all areas of molecular biophysics and biochemistry, making it essential for modern students of molecular behavior. But traditional presentations of this material are often difficult to penetrate. Statistical Physics of Biomolecules: An Introduction brings "down to earth" some of the most intimidating but important theories of molecular biophysics. With an accessible writing style, the book unifies statistical, dynamic, and thermodynamic descriptions of molecular behavior using probability ideas as a common basis. Numerous examples illustrate how the twin perspectives of dynamics and equilibrium deepen our understanding of essential ideas such as entropy, free energy, and the meaning of rate constants. The author builds on the general principles with specific discussions of water, binding phenomena, and protein conformational changes/folding. The same probabilistic framework used in the introductory chapters is also applied to non-equilibrium phenomena and to computations in later chapters. The book emphasizes basic concepts rather than cataloguing a broad range of phenomena. Focuses on what students need to know now Students build a foundational understanding by initially focusing on probability theory, low-dimensional models, and the simplest molecular systems. The basics are then directly developed for biophysical phenomena, such as water behavior, protein binding, and conformational changes. The book's accessible development of equilibrium and dynamical statistical physics makes this a valuable text for students with limited physics and chemistry backgrounds.
Featuring updated versions of two research courses held at the Centre Emile Borel in Paris in 2001, this book describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields. It also discusses four conjectures for the kinetic behavior of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these.
In this revised and enlarged second edition, Tony Guenault provides a clear and refreshingly readable introduction to statistical physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. The book adopts a straightforward quantum approach to statistical averaging from the outset. The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
Written by a world-renowned theoretical physicist, Introduction to Statistical Physics, Second Edition clarifies the properties of matter collectively in terms of the physical laws governing atomic motion. This second edition expands upon the original to include many additional exercises and more pedagogically oriented discussions that fully explain the concepts and applications. The book first covers the classical ensembles of statistical mechanics and stochastic processes, including Brownian motion, probability theory, and the Fokker-Planck and Langevin equations. To illustrate the use of statistical methods beyond the theory of matter, the author discusses entropy in information theory, Brownian motion in the stock market, and the Monte Carlo method in computer simulations. The next several chapters emphasize the difference between quantum mechanics and classical mechanics-the quantum phase. Applications covered include Fermi statistics and semiconductors and Bose statistics and Bose-Einstein condensation. The book concludes with advanced topics, focusing on the Ginsburg-Landau theory of the order parameter and the special kind of quantum order found in superfluidity and superconductivity. Assuming some background knowledge of classical and quantum physics, this textbook thoroughly familiarizes advanced undergraduate students with the different aspects of statistical physics. This updated edition continues to provide the tools needed to understand and work with random processes.
A dynamical system is called isochronous if it features in its
phase space an open, fully-dimensional region where all its
solutions are periodic in all its degrees of freedom with the same,
fixed period. Recently a simple transformation has been introduced,
applicable to quite a large class of dynamical systems, that yields
autonomous systems which are isochronous. This justifies the notion
that isochronous systems are not rare.
Based on the recent NATO Advanced Study Institute "Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems", this state of the art textbook, written by internationally renowned experts, provides an invaluable reference volume for all students and researchers in gravitational n-body systems. The contributions are especially designed to give a systematic development from the fundamental mathematics which underpin modern studies of ordered and chaotic behaviour in n-body dynamics to their application to real motion in planetary systems. This volume presents an up-to-date synoptic view of the subject.
Electrons and ions have been used for over 40 years as probes to investigate the fascinating properties of helium liquids. The study of the transport properties of microscopic charge carriers sheds light on superfluidity, on quantum hydrodynamics, and on the interactions with collective excitations in quantum liquids. The structure of the probes themselves depends on their coupling with the liquid environment in a way that gives further insight into the microscopic behavior of the liquid in different thermodynamic conditions, such as in the superfluid phase, in the normal phase, or near the liquid-vapor critical point. This book provides a comprehensive review of the experiments and theories of transport properties of charge carriers in liquid helium. It is a subject about which no other monograph exists to date. The book is intended for graduate and postgraduate students and for condensed matter physicists who will benefit from its completeness and accuracy.
This open access book offers a concise overview of how data from large scale experiments are analyzed and how technological tools are used in practice, as in the search for new elementary particles. It focuses on interconnects between physics and detector technology in experimental particle physics, and includes descriptions of mathematical approaches. Readers find all the important steps in analysis, including reconstruction of the momentum and energy of particles from detector information, particle identification, and also the general concept of simulating particle production from collisions and detector responses. As the scale of scientific experiments becomes larger and data-intensive science emerges, the techniques used in the data analysis become ever more complicated, making it difficult for beginners to grasp the overall picture. The book provides an explanation of the idea and concepts behind the methods, helping readers understand journal articles on high energy physics. This book is engaging as it does not overemphasize mathematical formalism and it gives a lively example of how such methods have been applied to the Higgs particle discovery in the Large Hadron Collider (LHC) experiments, which led to Englert and Higgs being awarded the Nobel Prize in Physics for 2013. Graduate students and young researchers can easily obtain the required knowledge on how to start data analyses from these notes, without having to spend time in consulting many experts or digesting huge amounts of literature. |
You may like...
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,700
Discovery Miles 17 000
Integrability, Supersymmetry and…
Sengul Kuru, Javier Negro, …
Hardcover
R2,722
Discovery Miles 27 220
Quantum Signatures of Chaos
Fritz Haake, Sven Gnutzmann, …
Hardcover
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
|