![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Do Smart Adaptive Systems Exist? is intended as a reference and a guide summarising and focusing on best practices when using intelligent techniques and building systems requiring a degree of adaptation and intelligence. It is therefore not intended as a collection of the most recent research results, but as a practical guide for experts from other areas and industrial users interested in building solutions to their problems using intelligent techniques. One of the main issues covered is an attempt to answer the question of how to select and/or combine suitable intelligent techniques from a large pool of potential solutions. Another attractive feature of the book is that it brings together experts from neural network, fuzzy, machine learning, evolutionary and hybrid systems communities who will provide their views on how these different intelligent technologies have contributed and will contribute to creation of smart adaptive systems of the future.
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
Geophysics, or physics modelling of geological phenomena, is as old and as - tablished as geoscience itself. The statistical physics modelling of various g- physical phenomena, earthquake in particular, is comparatively recent. This bookintendstocovertheserecentdevelopmentsinmodellingvariousgeoph- ical phenomena, including the imposing classic phenomenon of earthquakes, employing various statistical physical ideas and techniques. This ?rst book on statistical physics modelling of geophysical phenomena contains extensive - viewsbyalmostalltheleadingexpertsinthe?eldandshouldbewidelyuseful to the graduate students and researchers in geoscience and statistical physics. It grew out of the lecture notes from a workshop on "Models of Earthquakes: Physics Approaches," held in Saha Institute of Nuclear Physics, Kolkata, - der the auspices of its Centre for Applied Mathematics and Computational Science in December 2005. The book is divided in four parts. In the ?rst part, tutorial materials are introduced. Chakrabarti introduces the fracture nucleation processes, their (extreme) statistics in disordered solids, in ?bre bundle models and in the two fractal overlap models of earthquakes. In the next two chapters, Hemmer et al. and Kun et al. review the avalanche or quake statistics and the bre- ing dynamics in simple (mean-?eld like) ?bre bundle models and in their extended versions, respectively. Hansen and Mathiesen discuss the scale - variance properties of the random and fractured surfaces.
The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell's inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems: the impossibility to establish a finer description of micro-phenomena than provided by quantum mechanics; and, in particular, the commonly accepted consequences of Bell's theorem (including quantum non-locality). Also, possible applications of the contextual probabilistic model and its quantum-like representation in complex Hilbert spaces in other fields (e.g. in cognitive science and psychology) are discussed.
An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as those found in pipes and channels. The central objective of the symposium was to discuss the increasing amount of experimental and numerical evidence for finite amplitude solutions to the Navier-Stokes equations and to set the work into a modern theoretical context. The participants included many of the leading authorities in the subject and this volume captures much of the flavour of the resulting stimulating and lively discussions.
This clear book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works. The author emphasises the relation between microscopic reversibility and macroscopic irreversibility, explaining fundamental concepts in detail.
In June of 2002, over 500 professors, students and researchers met in Boston, Massachusetts for the Fourth International Conference on Complex Systems. The attendees represented a remarkably diverse collection of fields: biology, ecology, physics, engineering, computer science, economics, psychology and sociology, The goal of the conference was to encourage cross-fertilization between the many disciplines represented and to deepen understanding of the properties common to all complex systems. This volume contains 43 papers selected from the more than 200 presented at the conference. Topics include: cellular automata, neurology, evolution, computer science, network dynamics, and urban planning. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex systems and its application for the betterment of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book Series in conjunction with Springer Publishers. ALI MINAI is an Affiliate of the New England Complex Systems Institute and an Associate Professor in the Department of Electrical and Computer Engineering and Computer Science at the University of Cincinnati. YANEER BAR-YAM is President and founder of the New England Complex Systems Institute. He is the author of Dynamics of Complex Systems and Making Things Work: Solving Complex Problems in a Complex World.
This is the first monograph devoted to investigation of the most complex physical processes of soft systems, including a wide class of solutions. It blends modern theoretical understanding and experimental results, proposing new methods and models for the description of several soft systems.
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
Written by the world 's leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It examines the most important contributions to the field made in the past decade, offering a critical and comprehensive portrait of the subject from various complementary perspectives.
Complex dynamics constitute a growing and increasingly important area as they offer a strong potential to explain and formalize natural, physical, financial and economic phenomena. This book pursues the ambitious goal to bring together an extensive body of knowledge regarding complex dynamics from various academic disciplines. Beyond its focus on economics and finance, including for instance the evolution of macroeconomic growth models towards nonlinear structures as well as signal processing applications to stock markets, fundamental parts of the book are devoted to the use of nonlinear dynamics in mathematics, statistics, signal theory and processing. Numerous examples and applications, almost 700 illustrations and numerical simulations based on the use of Matlab make the book an essential reference for researchers and students from many different disciplines who are interested in the nonlinear field. An appendix recapitulates the basic mathematical concepts required to use the book.
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schr dinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.
The three well known revolutions of the past centuries - the Copernican, the Darwinian and the Freudian - each in their own way had a deflating and mechanizing effect on the position of humans in nature. They opened up a richness of disillusion: earth acquired a more modest place in the universe, the human body and mind became products of a long material evolutionary history, and human reason, instead of being the central, immaterial, locus of understanding, was admitted into the theater of discourse only as a materialized and frequently out-of-control actor. Is there something objectionable to this picture? Formulated as such, probably not. Why should we resist the idea that we are in certain ways, and to some degree, physically, biologically or psychically determined? Why refuse to acknowledge the fact that we are materially situated in an ever evolving world? Why deny that the ways of inscription (traces of past events and processes) are co-determinative of further "evolutionary pathways"? Why minimize the idea that each intervention, of each natural being, is temporally and materially situated, and has, as such, the inevitable consequence of changing the world? The point is, however, that there are many, more or less radically different, ways to consider the "mechanization" of man and nature. There are, in particular, many ways to get the message of "material and evolutionary determination," as well as many levels at which this determination can be thought of as relevant or irrelevant.
This graduate-level textbook is devoted to understanding, prediction and control of high-dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high-dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincare's 3-body problem, high-tech Josephson junctions, and more."
Statistical Methods in Quantum Optics 2 - Non-Classical Fields continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in the first volume Statistical Methods in Quantum Optics 1 - Matter Equations and Fokker-Planck Equations the difficulties these methods face in treating non-classical light are exposed, where the regime of large fluctuations failure of the system size expansion is shown to be particularly problematic. Cavity QED is adopted as a natural vehicle for extending quantum noise theory into this regime. In response to the issues raised, the theory of quantum trajectories is presented as a universal approach to the treatment of fluctuations in open quantum systems. This book presents its material at a level suitable for beginning researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems. The text is complemented by exercises and interspersed notes that point the reader to side issues or a deeper exploration of the material presented."
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
This detailed, accessible introduction to the field of quantum decoherence reviews the basics and then explains the essential consequences of the phenomenon for our understanding of the world. The discussion includes, among other things: How the classical world of our experience can emerge from quantum mechanics; the implications of decoherence for various interpretations of quantum mechanics; recent experiments confirming the puzzling consequences of the quantum superposition principle and making decoherence processes directly observable.
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations, lasers, andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and system
This book, written by a leader in neural network theory in Russia, uses mathematical methods in combination with complexity theory, nonlinear dynamics and optimization. It details more than 40 years of Soviet and Russian neural network research and presents a systematized methodology of neural networks synthesis. The theory is expansive: covering not just traditional topics such as network architecture but also neural continua in function spaces as well.
In this book, we approach neurophysiology at the interface of neurology and clinical neurophysiology. The medical disciplines of the nervous system, n- rology and clinical neurophysiology, rest heavily on other sciences, notably cellular biology, neuro-anatomy, neuro-physiology, applied physics and ma- ematical biology. Existing medical textbooks on neurophysiology, neurology and clinical neurophysiology are an excellent source of the phenomenology of various principles and diseases. Here, we choose to elucidate some of the under- ing physiological, physical processes and experimental methods, intended for a broad audience - medical residents and students, as well as students in the emerging area of medical technical sciences. We feel that a good understanding of fundamentals may signi?cantly - hance insight into various aspects of clinical neurology and clinical neu- physiology. This book, therefore, is focused on a selection of clinical signs and symptoms to highlight basic principles of neurology, (neuro-)physiology and neuroanatomy. While we believe this text to be of interest to medical students or residents in neurology or clinical neurophysiology, we speci?cally aim at students - terested in contributing to new developments and innovations in neurology and clinical neurophysiology. These students are involved with patients, even though they are not trained for routine patient care.
Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area. Recent Advances in Reinforcement Learning is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 22, Numbers 1, 2 and 3).
As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems."
This book is the first comprehensive volume on nonlinear dynamics and chaos in optical systems. A few books have been published recently, but they summarize applied mathematical methodologies toward understanding of nonlinear dynamics in laser systems with small degrees of freedom focusing on linearized perturbation and bifurcation analyses. In contrast to these publications, this book summarizes nonlinear dynamic problems in optical complex systems possessing large degrees of freedom, systematically featuring our original experimental results and their theoretical treatments. The new concepts introduced in this book will have a wide appeal to audiences involved in a rapidly-growing field of nonlinear dynamics. This book focuses on nonlinear dynamics and cooperative functions in realistic optical complex systems, such as multimode lasers, laser array, coupled nonlinear-element systems, and their applications to optical processing. This book is prepared for graduate students majoring in optical and laser physics, but the generic nature of complex systems described in this book may stimulate researchers in the field of nonlinear dynamics covering different academic areas including applied mathematics, hydrodynamics, celestial mechanics, chemistry, biology, and economics. |
You may like...
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Statistical Mechanics - An Introductory…
A. J. Berlinsky, A. B. Harris
Hardcover
R2,995
Discovery Miles 29 950
Chaos and Coarse Graining in Statistical…
Patrizia Castiglione, Massimo Falcioni, …
Hardcover
R3,643
Discovery Miles 36 430
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R3,777
Discovery Miles 37 770
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
|