![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
During the past ten years, there has been intensive development in theoretical and experimental research of solitons in periodic media. This book provides a unique and informative account of the state-of-the-art in the field. The volume opens with a review of the existence of robust solitary pulses in systems built as a periodic concatenation of very different elements. Among the most famous examples of this type of systems are the dispersion management in fiber-optic telecommunication links, and (more recently) photonic crystals. A number of other systems belonging to the same broad class of spatially periodic strongly inhomogeneous media (such as the split-step and tandem models) have recently been identified in nonlinear optics, and transmission of solitary pulses in them was investigated in detail. Similar soliton dynamics occurs in temporal-domain counterparts of such systems, where they are subject to strong time-periodic modulation (for instance, the Feshbach-resonance management in Bose-Einstein condensates). Basis results obtained for all these systems are reviewed in the book. This timely work will serve as a useful resource for the soliton community.
This volume offers of the EU-funded 5th Framework project, FLOMANIA (Flow Physics Modelling - An Integrated Approach). The book presents an introduction to the project, exhibits partners' methods and approaches, and provides comprehensive reports of all applications treated in the project. A complete chapter is devoted to a description of turbulence models used by the partners together with a section on lessons learned, accompanied by a comprehensive list of references.
Thank heavens for Jens Wittenburg, of the University of Karlsruhe in Germany. Anyone who 's been laboring for years over equation after equation will want to give him a great big hug. It is common practice to develop equations for each system separately and to consider the labor necessary for deriving all of these as inevitable. Not so, says the author. Here, he takes it upon himself to describe in detail a formalism which substantially simplifies these tasks.
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as those found in pipes and channels. The central objective of the symposium was to discuss the increasing amount of experimental and numerical evidence for finite amplitude solutions to the Navier-Stokes equations and to set the work into a modern theoretical context. The participants included many of the leading authorities in the subject and this volume captures much of the flavour of the resulting stimulating and lively discussions.
The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell's inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems: the impossibility to establish a finer description of micro-phenomena than provided by quantum mechanics; and, in particular, the commonly accepted consequences of Bell's theorem (including quantum non-locality). Also, possible applications of the contextual probabilistic model and its quantum-like representation in complex Hilbert spaces in other fields (e.g. in cognitive science and psychology) are discussed.
This clear book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works. The author emphasises the relation between microscopic reversibility and macroscopic irreversibility, explaining fundamental concepts in detail.
In June of 2002, over 500 professors, students and researchers met in Boston, Massachusetts for the Fourth International Conference on Complex Systems. The attendees represented a remarkably diverse collection of fields: biology, ecology, physics, engineering, computer science, economics, psychology and sociology, The goal of the conference was to encourage cross-fertilization between the many disciplines represented and to deepen understanding of the properties common to all complex systems. This volume contains 43 papers selected from the more than 200 presented at the conference. Topics include: cellular automata, neurology, evolution, computer science, network dynamics, and urban planning. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex systems and its application for the betterment of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book Series in conjunction with Springer Publishers. ALI MINAI is an Affiliate of the New England Complex Systems Institute and an Associate Professor in the Department of Electrical and Computer Engineering and Computer Science at the University of Cincinnati. YANEER BAR-YAM is President and founder of the New England Complex Systems Institute. He is the author of Dynamics of Complex Systems and Making Things Work: Solving Complex Problems in a Complex World.
This is the first monograph devoted to investigation of the most complex physical processes of soft systems, including a wide class of solutions. It blends modern theoretical understanding and experimental results, proposing new methods and models for the description of several soft systems.
Written by the world 's leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It examines the most important contributions to the field made in the past decade, offering a critical and comprehensive portrait of the subject from various complementary perspectives.
Geomorphology deals with some of the most striking patterns of nature. From mountain ranges and mid-ocean ridges to river networks and sand dunes, there is a whole family of forms, structures, and shapes that demand rationalization as well as mathematical description. In the various chapters of this volume, many of these patterns are explored and discussed, and attempts are made to both unravel the reasons for their very existence and to describe their dynamics in quantitative terms. Particular focus is placed on lava and mud flows, ice and snow dynamics, river and coastal morphodynamics and landscape formation. Combining a pedagogical approach with up-to-date reviews of forefront research, this volume will serve both postgraduate students and lecturers in search of advanced textbook material, and experienced researchers wishing to get acquainted with the various physical and mathematical approaches in a range of closely related research fields.
Complex dynamics constitute a growing and increasingly important area as they offer a strong potential to explain and formalize natural, physical, financial and economic phenomena. This book pursues the ambitious goal to bring together an extensive body of knowledge regarding complex dynamics from various academic disciplines. Beyond its focus on economics and finance, including for instance the evolution of macroeconomic growth models towards nonlinear structures as well as signal processing applications to stock markets, fundamental parts of the book are devoted to the use of nonlinear dynamics in mathematics, statistics, signal theory and processing. Numerous examples and applications, almost 700 illustrations and numerical simulations based on the use of Matlab make the book an essential reference for researchers and students from many different disciplines who are interested in the nonlinear field. An appendix recapitulates the basic mathematical concepts required to use the book.
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schr dinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.
Statistical Methods in Quantum Optics 2 - Non-Classical Fields continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in the first volume Statistical Methods in Quantum Optics 1 - Matter Equations and Fokker-Planck Equations the difficulties these methods face in treating non-classical light are exposed, where the regime of large fluctuations failure of the system size expansion is shown to be particularly problematic. Cavity QED is adopted as a natural vehicle for extending quantum noise theory into this regime. In response to the issues raised, the theory of quantum trajectories is presented as a universal approach to the treatment of fluctuations in open quantum systems. This book presents its material at a level suitable for beginning researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems. The text is complemented by exercises and interspersed notes that point the reader to side issues or a deeper exploration of the material presented."
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
This book is the first comprehensive volume on nonlinear dynamics and chaos in optical systems. A few books have been published recently, but they summarize applied mathematical methodologies toward understanding of nonlinear dynamics in laser systems with small degrees of freedom focusing on linearized perturbation and bifurcation analyses. In contrast to these publications, this book summarizes nonlinear dynamic problems in optical complex systems possessing large degrees of freedom, systematically featuring our original experimental results and their theoretical treatments. The new concepts introduced in this book will have a wide appeal to audiences involved in a rapidly-growing field of nonlinear dynamics. This book focuses on nonlinear dynamics and cooperative functions in realistic optical complex systems, such as multimode lasers, laser array, coupled nonlinear-element systems, and their applications to optical processing. This book is prepared for graduate students majoring in optical and laser physics, but the generic nature of complex systems described in this book may stimulate researchers in the field of nonlinear dynamics covering different academic areas including applied mathematics, hydrodynamics, celestial mechanics, chemistry, biology, and economics.
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
The problem of irreversibility is ubiquitous in physics and chemistry. The present book attempts to present a unified theoretical and conceptual framework for the description of various irreversible phenomena in quantum mechanics. In a sense, this book supplements conventional textbooks on quantum mechanics by including the theory of irreversibilities. However, the content and style of this book are more appropriate for a monograph than a textbook. We have tried to arrange the material so that, as far as possible, the reader need not continually refer elsewhere. The references to the literature make no pretense of completeness. The book is by no means a survey of present theoretical work. We have tried to highlight the basic principles and their results, while the attention has been mainly paid to the problems in which the author himself has been involved. The book as a whole is designed for the reader with knowledge of theoretical physics (especially quantum mechanics) at university level. This book is based on the courses of lectures given at the Chemistry Department of Tel-Aviv University.
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
Despite the fact that images constitute the main objects in computer vision and image analysis, there is remarkably little concern about their actual definition. In this book a complete account of image structure is proposed in terms of rigorously defined machine concepts, using basic tools from algebra, analysis, and differential geometry. Machine technicalities such as discretisation and quantisation details are de-emphasised, and robustness with respect to noise is manifest. From the foreword by Jan Koenderink: It is my hope that the book will find a wide audience, including physicists - who still are largely unaware of the general importance and power of scale space theory, mathematicians - who will find in it a principled and formally tight exposition of a topic awaiting further development, and computer scientists - who will find here a unified and conceptually well founded framework for many apparently unrelated and largely historically motivated methods they already know and love. The book is suited for self-study and graduate courses, the carefully formulated exercises are designed to get to grips with the subject matter and prepare the reader for original research.'
The vulnerability of our civilization to earthquakes is rapidly growing, rais ing earthquakes to the ranks of major threats faced by humankind. Earth quake prediction is necessary to reduce that threat by undertaking disaster preparedness measures. This is one of the critically urgent problems whose solution requires fundamental research. At the same time, prediction is a ma jor tool of basic science, a source of heuristic constraints and the final test of theories. This volume summarizes the state-of-the-art in earthquake prediction. Its following aspects are considered: - Existing prediction algorithms and the quality of predictions they pro vide. - Application of such predictions for damage reduction, given their current accuracy, so far limited. - Fundamental understanding of the lithosphere gained in earthquake prediction research. - Emerging possibilities for major improvements of earthquake prediction methods. - Potential implications for predicting other disasters, besides earthquakes. Methodologies. At the heart of the research described here is the inte gration of three methodologies: phenomenological analysis of observations; "universal" models of complex systems such as those considered in statistical physics and nonlinear dynamics; and Earth-specific models of tectonic fault networks. In addition, the theory of optimal control is used to link earthquake prediction with earthquake preparedness."
Within the framework of Jaynes' "Predictive Statistical Mechanics,"
this book presents a detailed derivation of an ensemble formalism
for open systems arbitrarily away from equilibrium. This involves a
large systematization and extension of the fundamental works and
ideas of the outstanding pioneers Gibbs and Boltzmann, and of
Bogoliubov, Kirkwood, Green, Mori, Zwanzig, Prigogine and Zubarev,
among others.
Mesoscopic physics has made great strides in the last few years. It is an area of research that is attractive to many graduate students of theoretical condensed matter physics. The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students. Even when the non-perturbative techniques are presented, they often are presented within an abstract context. It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear. It is an apt time to have such a volume since the field has reached a level of maturity. The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field. The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical methods of conformal field theory which are applied to the understanding of Luttinger liquids. Electrons which interact strongly can give rise to non-trivial ground states such as superconductivity, quantum Hall states and magnetism. Both their theory and application are discussed in a pedagogical way for quantum information in mesoscopic superconducting devices, skyrmions and magnetism in two dimensional electron gases, transport in quantum wires, metal-insulator transitions and spin electronics.
Many physical phenomena are described by nonlinear evolution
equation. Those that are integrable provide various mathematical
methods, presented by experts in this tutorial book, to find
special analytic solutions to both integrable and partially
integrable equations. The direct method to build solutions includes
the analysis of singularities a la Painleve, Lie symmetries leaving
the equation invariant, extension of the Hirota method,
construction of the nonlinear superposition formula. The main
inverse method described here relies on the bi-hamiltonian
structure of integrable equations. The book also presents some
extension to equations with discrete independent and dependent
variables. |
You may like...
Leatherpress Coral Red Genuine African…
Leatherpress
Leather / fine binding
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
(1)R480 Discovery Miles 4 800
|