![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Human-Like Biomechanics is a comprehensive introduction into modern geometrical methods to be used as a unified research approach in two apparently separate and rapidly growing fields: mathematical biomechanics and humanoid robotics. The term human-like biomechanics is used to denote this unified modelling and control approach to humanoid robotics and mathematical biomechanics, based on theoretical mechanics, differential geometry and topology, nonlinear dynamics and control, and path-integral methods. From this geometry-mechanics-control modelling perspective, "human" and "humanoid" means the same. This unified approach enables both design of humanoid systems of immense complexity and prediction/prevention of subtle neuro-musculo-skeletal injuries. This approach has been realized in the form of the world-leading human-motion simulator with 264 powered degrees of freedom, called Human Biodynamics Engine (developed in Defence Science & Technology Organisation, Australia). The book contains six Chapters and an Appendix. The first Chapter is an Introduction, giving a brief review of mathematical techniques to be used in the text. The second Chapter develops geometrical basis of human-like biomechanics, while the third Chapter develops its mechanical basis, mainly from generalized Lagrangian and Hamiltonian perspective. The fourth Chapter develops topology of human-like biomechanics, while the fifth Chapter reviews related nonlinear control techniques. The sixth Chapter develops covariant biophysics of electro-muscular stimulation. The Appendix consists of two parts: classical muscular mechanics and modern path integral methods, which are both used frequently in the main text. The whole book is based on the authors own research papers in human-like biomechanics. "
This volume contains 27 contributions to the Second Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in March 2005 at Stuttgart, Germany. Contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering.
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Hard spheres and related objects (hard disks and mixtures of hard systems) are paradigmatic systems: indeed, they have served as a basis for the theoretical and numerical development of a number of fields, such as general liquids and fluids, amorphous solids, liquid crystals, colloids and granular matter, to name but a few. The present volume introduces and reviews some important basics and progress in the study of such systems. Their structure, thermodynamic properties, equations of state, as well as kinetic and transport properties are considered from different and complementary points of view. This book addresses graduate students, lecturers as well as researchers in statistical mechanics, physics of liquids, physical chemistry and chemical engineering.
Cybernetical physics borrows methods from both theoretical physics and control engineering. It deals with the control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behavior or similar features that defy traditional control techniques. This book fully details this new discipline.
El que sabe que sabe es un sabio. S' ?guelo. El que no sabe que sabe esta dormido. Despi' ertalo. El que sabe que no sabe es sencillo. Instruyelo. ' El que no sabe que no sabe es un necio. Ap' artate de ' el (He who knows and knows he knows, he is wise. Follow him. He who knows and knows not he knows, he is asleep. Wake him. He who knows not and knows he knows not, he is simple. Teach him. He who knows not and knows not he knows not, he is a fool. Shun him.) Proverbio Arabe. Corrige al sabio y lo har' as m' as sabio, corrige al necio y lo har' as tu enemigo. Sedulo curavi, humanas actiones non ridere, non lugere, neque detestari, sed intelligere. (I have made a ceaseless e?ort not to ridicule, not to bewail, not to scorn human actions, but to understand them.) Benedictus de Spinoza (1632-1677).
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks, controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem, nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementation
This graduate-level textbook is devoted to understanding, prediction and control of high-dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high-dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincare's 3-body problem, high-tech Josephson junctions, and more."
While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.
Condensed-matter physics plays an ever increasing role in photonics, electronic and atomic collisions research. Dispersion (Dynamics and Relaxation) includes scattering/collisions in the gaseous phase. It also includes thermal agitation, tunneling and relaxation in the liquid and solid phases. Classical mechanics, classical statistical mechanics, classical relativity and quantum mechanics are all implicated. 'Semiclassical' essentially means that there is a large or asymptotic real parameter. 'Semiclassical' can also mean 'classical with first-order quantal correction', based on an exponentiated Liouville series commencing with a simple pole in the -plane, being Planck's reduced constant and coming with all the attendant connection problems associated with the singularity at the turning or transition point and with the Stokes phenomenon. Equally, ' semiclassical' can mean 'electrons described quantally and the heavy particles classically'. This latter gives rise to the so-called impact parameter method based on a pre-assigned classical trajectory. With evermore sophisticated experiments, it has become equally more important to test theory over a wider range of parameters. For instance, at low impact energies in heavy-particle collisions, the inverse velocity is a large parameter; in single-domain ferromagnetism, thermal agitation (including Brownian motion and continuous-time random walks) is faced with a barrier of height 'sigma', a possibly large parameter. Methods of solution include phase-integral analysis, integral transforms and change-of-dependent variable. We shall consider the Schrodinger time-independent and time-dependent equations, the Dirac equation, the Fokker Planck equation, the Langevin equation and the equations of Einstein's classical general relativity equations. There is an increasing tendency among physicists to decry applied mathematics and theoretical physics in favour of computational blackboxes. One may say applied mathematics concerns hard sums and products (and their inverses) but unless one can simplify and sum infinite series of products of infinite series, can one believe the results of a computer program? The era of the polymath has passed; this book proposal aims to show the relevance to, and impact of theory on, laboratory scientists."
This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important.
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.
Mechanics as a fundamental science in Physics and in Engineering deals with interactions of forces resulting in motion and deformation of material bodies. Similar to other sciences Mechanics serves in the world of Physics and in that of Engineering in a di?erent way, in spite of many and increasing inter- pendencies. Machines and mechanisms are for physicists tools for cognition and research, for engineers they are the objectives of research, according to a famous statement of the Frankfurt physicist and biologist Friedrich Dessauer. Physicists apply machines to support their questions to Nature with the goal of new insights into our physical world. Engineers apply physical knowledge to support the realization process of their ideas and their intuition. Physics is an analytical Science searching for answers to questions concerning the world around us. Engineering is a synthetic Science, where the physical and ma- ematical fundamentals play the role of a kind of reinsurance with respect to a really functioning and e?ciently operating machine. Engineering is also an iterative Science resulting in typical long-time evolutions of their products, but also in terms of the relatively short-time developments of improving an existing product or in developing a new one. Every physical or mathematical Science has to face these properties by developing on their side new methods, new practice-proved algorithms up to new fundamentals adaptable to new technological developments. This is as a matter of fact also true for the ?eld of Mechanics.
This book is intended to serve as an introduction to the multidisciplinary ?eld of anomalous diffusion in complex systems such as turbulent plasma, convective rolls, zonal ?ow systems, stochastic magnetic ?elds, etc. In spite of its great importance, turbulent transport has received comparatively little treatment in published mo- graphs. This book attempts a comprehensive description of the scaling approach to turbulent diffusion. From the methodological point of view, the book focuses on the general use of correlation estimates, quasilinear equations, and continuous time random walk - proach. I provide a detailed structure of some derivations when they may be useful for more general purposes. Correlation methods are ?exible tools to obtain tra- port scalings that give priority to the richness of ingredients in a physical pr- lem. The mathematical description developed here is not meant to provide a set of "recipes" for hydrodynamical turbulence or plasma turbulence; rather, it serves to develop the reader's physical intuition and understanding of the correlation mec- nisms involved.
The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.
This book is devoted to applications of complex nonlinear dynamic phenomena to real systems and device applications. In recent decades there has been significant progress in the theory of nonlinear phenomena, but there are comparatively few devices that actually take this rich behavior into account. The text applies and exploits this knowledge to propose devices which operate more efficiently and cheaply, while affording the promise of much better performance.
Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships' wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography - the near-surface layer of the ocean.
The present volume contains expanded and substantially reworked records of invitedlecturesdeliveredduringthe38thKarpaczWinterSchoolofTheoretical Physics on "Dynamical Semigroups: Dissipation, Chaos, Quanta", which took placeinLadek , Zdr' oj,(Poland)intheperiod6-15February2002. Themainpurposeoftheschoolwastocreateaplatformfortheconfrontation ofviewpointsandresearchmethodologiesrepresentedbytwogroupsofexperts actually working in the very same area of theoretical physics. This situation is quite distinct in non-equilibrium statistical physics of open systems, where classicalandquantumaspectsareaddressedseparatelybymeansofverydi?erent andevenincompatibleformaltools. TheschooltopicsselectionbytheLecturersreads:dissipativedynamicsand chaoticbehaviour,modelsofenvironment-systemcouplingandmodelsofth- mostats;non-equilibriumstatisticalmechanicsandfarfromequilibriumphen- ena;quantumopensystems,decoherenceandlinkstoquantumchaos;quantum andclassicalapplicationsofMarkovsemigroupsandthevalidityofMarkovian approximations. Theorganizingprincipleforthewholeendeavourwastheissueofthedyn- ics of open systems and more speci?cally -15February2002. Themainpurposeoftheschoolwastocreateaplatformfortheconfrontation ofviewpointsandresearchmethodologiesrepresentedbytwogroupsofexperts actually working in the very same area of theoretical physics. This situation is quite distinct in non-equilibrium statistical physics of open systems, where classicalandquantumaspectsareaddressedseparatelybymeansofverydi?erent andevenincompatibleformaltools. TheschooltopicsselectionbytheLecturersreads:dissipativedynamicsand chaoticbehaviour,modelsofenvironment-systemcouplingandmodelsofth- mostats;non-equilibriumstatisticalmechanicsandfarfromequilibriumphen- ena;quantumopensystems,decoherenceandlinkstoquantumchaos;quantum andclassicalapplicationsofMarkovsemigroupsandthevalidityofMarkovian approximations. Theorganizingprincipleforthewholeendeavourwastheissueofthedyn- ics of open systems and more speci?cally - thedynamics of dissipation. Since this research area is extremely broad and varied, no single book can cover all importantdevelopments. Therefore,linkswithdynamicalchaoswerechosento representasupplementaryconstraint. Theprogrammeoftheschoolandits?naloutcomeintheformofthepresent volumehasbeenshapedwiththehelpofthescienti?ccommitteecomprising:R. Alicki,Ph. Blanchard,J. R. Dorfman,G. Gallavotti,P. Gaspard,I. Guarneri, ? F. Haake, M. Ku's, A. Lasota, B. Zegarlinski ' and K. Zyczkowski. Some of the committeememberstookchargeoflecturingtoo. Weconveyourthankstoall ofthem. Wewouldliketoexpresswordsofgratitudetomembersofthelocalorgan- ingcommittee,W. Ceg laandP. Lugiewicz, fortheirhelp. Specialthanksmust beextendedtoMrsAnnaJadczykforherhelpatvariousstagesoftheschool organizationandthecompetenteditorialassistance. Theschoolwas?nanciallysupportedbytheUniversityofWroc law,Univ- sityofZielonaG' ora,PolishMinistryofEducation,PolishAcademyofSciences, FoundationfortheKarpaczWinterSchoolofTheoreticalPhysicsandthe- nationfromtheDrWilhelmHeinrichHeraeusundElseHeraeusStiftung. Wrocla wandZielonaG' ora,Poland PiotrGarbaczewski June2002 RobertOlkiewicz TableofContents Introduction...1 ChapterI NonequilibriumDynamics SomeRecentAdvancesinClassicalStatisticalMechanics E. G. D. Cohen...7 DeterministicThermostatsandFluctuationRelations L. Rondoni...35 WhatIstheMicroscopicResponseofaSystem DrivenFarFromEquilibrium? C. Jarzynski...63 Non-equilibriumStatisticalMechanics ofClassicalandQuantumSystems D. Kusnezov,E. Lutz,K. Aoki...8 3 ChapterII DynamicsofRelaxationandChaoticBehaviour DynamicalTheoryofRelaxation inClassicalandQuantumSystems P. Gaspard...111 RelaxationandNoiseinChaoticSystems S. Fishman,S. Rahav...165 FractalStructuresinthePhaseSpace ofSimpleChaoticSystemswithTransport J. R. Dorfman...193 ChapterIII DynamicalSemigroups MarkovSemigroupsandTheirApplications R. Rudnicki,K. Pich'or,M. Tyran-Kaminska ' ...215 VIII TableofContents InvitationtoQuantumDynamicalSemigroups R. Alicki...239 FiniteDissipativeQuantumSystems M. Fannes...265 CompletePositivityinDissipativeQuantumDynamics F. Benatti,R. Floreanini,R. Romano...283 QuantumStochasticDynamicalSemigroup W. A. Majewski ...305 ChapterIV Driving,DissipationandControlinQuantumSystems DrivenChaoticMesoscopicSystems, DissipationandDecoherence D. Cohen...317 QuantumStateControlinCavityQED T. WellensandA. Buchleitner...351 SolvingSchrodinger'sEquationforanOpenSystem andItsEnvironment W. T. Strunz...377 ChapterV DynamicsofLargeSystems ThermodynamicBehaviorofLargeDynamicalSystems -Quantum1dConductorandClassicalMultibakerMap- S. Tasaki...395 CoherentandDissipativeTransport inAperiodicSolids:AnOverview J. Bellissard...
Statistical Methods in Quantum Optics 2 - Non-Classical Fields continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in the first volume Statistical Methods in Quantum Optics 1 - Matter Equations and Fokker-Planck Equations the difficulties these methods face in treating non-classical light are exposed, where the regime of large fluctuations failure of the system size expansion is shown to be particularly problematic. Cavity QED is adopted as a natural vehicle for extending quantum noise theory into this regime. In response to the issues raised, the theory of quantum trajectories is presented as a universal approach to the treatment of fluctuations in open quantum systems. This book presents its material at a level suitable for beginning researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems. The text is complemented by exercises and interspersed notes that point the reader to side issues or a deeper exploration of the material presented."
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or even the heart muscle, to name but a few. The book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.
For most cases of interest, exact solutions to nonlinear equations describing stochastic dynamical systems are not available. This book details the relatively simple and popular linearization techniques available, covering theory as well as application. It examines models with continuous external and parametric excitations, those that cover the majority of known approaches. |
![]() ![]() You may like...
Exercises in Numerical Linear Algebra…
Tom Lyche, Georg Muntingh, …
Hardcover
R2,288
Discovery Miles 22 880
New Approaches in Intelligent Control…
Kazumi Nakamatsu, Roumen Kountchev
Hardcover
Advances in Production Management…
Bojan Lalic, Vidosav Majstorovic, …
Hardcover
R3,052
Discovery Miles 30 520
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
Feferman on Foundations - Logic…
Gerhard Jager, Wilfried Sieg
Hardcover
R5,214
Discovery Miles 52 140
|