![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.
Fuzzy technology has emerged as one of the most exciting new concepts available. Fuzzy Logic and its Applications... covers a wide range of the theory and applications of fuzzy logic and related systems, including industrial applications of fuzzy technology, implementing human intelligence in machines and systems. There are four main themes: intelligent systems, engineering, mathematical foundations, and information sciences. Both academics and the technical community will learn how and why fuzzy logic is appreciated in the conceptual, design and manufacturing stages of intelligent systems, gaining an improved understanding of the basic science and the foundations of human reasoning.
For a system consisting of a random medium with rough boundaries, the governing (Bethe-Salpeter) equation for boundary-value transport problems can be written in a form such that the medium and the boundaries are treatedon an equal footing. This enables several expressions for the solution to be obtained by interchanging the roles of the medium and the boundaries, thus allowing the most convenient one to be selected according to the specific situation and the information required. This book presents a unified theory based on the Bethe-Salpeter equation with particular attention being paid to: boundary-value problems of transport, layer problems, a fixed scatterer imbedded in a bounded random medium, construction of an optical scattering matrix for a complete system, and optical wave propagation in a turbulent medium. The last topic is treated in terms of first moment equations combined with the cluster expansion and, second, the two-scale method based on the Lagrange variational principle.
"Principles of Statistical Radiophysics" is a four-volume series that introduces the newcomer to the theory of random functions. It aims at providing the background necessary to understand papers and monographs on the subject and to carry out independent research in the fields where fluctuations are of importance, e.g. radiophysics, optics, astronomy, and acoustics. Volume 3, "Elements of Random Fields," gives the basic mathematical definitions, general properties and specific forms of random fields, the generalization from correlation theory to random fields. It deals with stochastic partial differential equations, wave scattering at a chaotic screen, single scattering in random media and thermal fluctuations and radiation of electromagnetic fields.
The basic subjects and main topics covered by this book are: (1) Physics of Black Holes (classical and quantum); (2) Thermodynamics, entropy and internal dynamics; (3) Creation of particles and evaporation; (4) Mini black holes; (5) Quantum mechanics of black holes in curved spacetime; (6) The role of spin and torsion in the black hole physics; (7) Equilibrium geometry and membrane paradigm; (8) Black hole in string and superstring theory; (9) Strings, quantum gravity and black holes; (10) The problem of singularity; (11) Astrophysics of black holes; (12) Observational evidence of black holes. The book reveals the deep connection between gravitational, quantum and statistical physics and also the importance of black hole behaviour in the very early universe. An important new point discussed concerns the introduction of spin in the physics of black holes, showing its central role when correctly put into the Einstein equations through the geometric concept of torsion, with the new concept of a time-temperature uncertainty relation, minimal time, minimal entropy, quantization of entropy and the connection of black hole with wormholes. Besides theoretical aspects, the reader will also find observational evidence for black holes in active galactic nuclei, in binary X-ray sources and in supernova remnants. The book will thus interest physicists, astronomers, and astrophysicists at different levels of their career who specialize in classical properties, quantum processes, statistical thermodynamics, numerical collapse, observational evidence, general relativity and other related problems.
In this monograph, a statistical description of natural phenomena
is used to develop an information processing system capable of
modeling non-linear relationships between sensory data. The system,
based on self-organized, optimal preservation of empirical
information, applies these relationships for prediction and
adaptive control.
This volume contains most of the invited papers presented at the International Work shop on Synergetics, Schloss E1mau, Bavaria, May 2 to.May 7, 1977. This workshop fol lowed an International Symposium on SynergetiGS at Schloss E1mau, 1972, and an Inter national SUl11l1erschoo1 at Erice, Sicily, 1974. Synergetics is a rather new field of interdisciplinary research which studies the self-organized behavior of systems leading to the formation of structures and func tionings. Indeed the whole universe seems to be organized, with pronounced structures starting from spiral galaxies down to living cells. Furthermore, very many of the most interesting phenomena occur in systems which are far from thermal equilibrium. Synergetics in its present form focusses its attention on those phenomena where dra matic changes occur on a macroscopic scale. Here indeed Synergetics was able to re veal profound analogies between systems in different disciplines ranging from physics to sociology. This volume contains contributions from various fields but the reader will easily discover their cOl11J1on goal. Not only in the natural sciences but also in ecology, sociology, and economy, man is confronted with the problems of complex sys tems. The principles and analogies unearthed by Synergetics will certainly be very he1pfu to cope with such difficult problems. I use this opportunity to thank the Vo1kswagenwerk Foundation for its support of the project Synergetics and in particular for sponsoring the International Workshop on Synergetics."
Neurobiology research suggests that information can be represented by the location of an activity spot in a population of cells ('place coding'), and that this information can be processed by means of networks of interconnections. Place Coding in Analog VLSI defines a representation convention of similar flavor intended for analog-integrated circuit design. It investigates its properties and suggests ways to build circuits on the basis of this coding scheme. In this electronic version of place coding, numbers are represented by the state of an array of nodes called a map, and computation is carried out by a network of links. In the simplest case, a link is just a wire connecting a node of an input map to a node of an output map. In other cases, a link is an elementary circuit cell. Networks of links are somewhat reminiscent of look-up tables in that they hardwire an arbitrary function of one or several variables. Interestingly, these structures are also related to fuzzy rules, as well as some types of artificial neural networks.The place coding approach provides several substantial benefits over conventional analog design: * Networks of links can be synthesized by a simple procedure whatever the function to be computed. * Place coding is tolerant to perturbations and noise in current-mode implementations. * Tolerance to noise implies that the fundamental power dissipation limits of conventional analog circuits can be overcome by using place coding. The place coding approach is illustrated by three integrated circuits computing non-linear functions of several variables. The simplest one is made up of 80 links and achieves submicrowatt power consumption in continuous operation. The most complex one incorporates about 1800 links for a power consumption of 6 milliwatts, and controls the operation of an active vision system with a moving field of view. Place Coding in Analog VLSI is primarily intended for researchers and practicing engineers involved in analog and digital hardware design (especially bio-inspired circuits). The book is also a valuable reference for researchers and students in neurobiology, neuroscience, robotics, fuzzy logic and fuzzy control.
This book contains the lectures given at the Conference on Dynamics and Randomness held at the Centro de Modelamiento Matematico of the Universidad de Chile from December 11th to 15th, 2000. This meeting brought together mathematicians, theoretical physicists and theoretical computer scientists, and graduate students interested in fields re lated to probability theory, ergodic theory, symbolic and topological dynam ics. We would like to express our gratitude to all the participants of the con ference and to the people who contributed to its organization. In particular, to Pierre Collet, Bernard Host and Mike Keane for their scientific advise. VVe want to thank especially the authors of each chapter for their well prepared manuscripts and the stimulating conferences they gave at Santiago. We are also indebted to our sponsors and supporting institutions, whose interest and help was essential to organize this meeting: ECOS-CONICYT, FONDAP Program in Applied Mathematics, French Cooperation, Fundacion Andes, Presidential Fellowship and Universidad de Chile. We are grateful to Ms. Gladys Cavallone for their excellent work during the preparation of the meeting as well as for the considerable task of unifying the typography of the different chapters of this book.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chif1ese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Substances possessing heterogeneous microstructure on the nanometer and micron scales are scientifically fascinating and technologically useful. Examples of such substances include liquid crystals, microemulsions, biological matter, polymer mixtures and composites, vycor glasses, and zeolites. In this volume, an interdisciplinary group of researchers report their developments in this field. Topics include statistical mechanical free energy theories which predict the appearance of various microstructures, the topological and geometrical methods needed for a mathematical description of the subparts and dividing surfaces of heterogeneous materials, and modern computer-aided mathematical models and graphics for effective exposition of the salient features of microstructured materials.
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Roessler and Henon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
In this volume we continue the logical development of the work begun in Volume I, and the equilibrium theory now becomes a very special case of the exposition presented here. Once a departure is made from equilibrium, however, the problems become deeper and more subtle-and unlike the equilibrium theory, many aspects of nonequilibrium phenomena remain poorly understood. For over a century a great deal of effort has been expended on the attempt to develop a comprehensive and sensible description of nonequilibrium phenomena and irreversible processes. What has emerged is a hodgepodge of ad hoc constructs that do little to provide either a firm foundation, or a systematic means for proceeding to higher levels of understanding with respect to ever more complicated examples of nonequilibria. Although one should rightfully consider this situation shameful, the amount of effort invested testifies to the degree of difficulty of the problems. In Volume I it was emphasized strongly that the traditional exposition of equilibrium theory lacked a certain cogency which tended to impede progress with extending those considerations to more complex nonequilibrium problems. The reasons for this were adduced to be an unfortunate reliance on ergodicity and the notions of kinetic theory, but in the long run little harm was done regarding the treatment of equilibrium problems. On the nonequilibrium level the potential for disaster increases enormously, as becomes evident already in Chapter 1.
Correlation Effects in Low-Dimensional Electron Systems describes recent developments in theoretical condensed-matter physics, emphasizing exact solutions in one dimension including conformal-field theoretical approaches, the application of quantum groups, and numerical diagonalization techniques. Various key properties are presented for two-dimensional, highly correlated electron systems.
This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non-linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviation principles for strong topologies on path-distribution spaces. Topics also include a body of powerful branching and interacting particle methods.
Many novel cooperative phenomena found in a variety of systems studied by scientists can be treated using the uniting principles of synergetics. Examples are frustrated and random systems, polymers, spin glasses, neural networks, chemical and biological systems, and fluids. In this book attention is focused on two main problems. First, how local, topological constraints (frustrations) can cause macroscopic cooperative behavior: related ideas initially developed for spin glasses are shown to play key roles also for optimization and the modeling of neural networks. Second, the dynamical constraints that arise from the nonlinear dynamics of the systems: the discussion covers turbulence in fluids, pattern formation, and conventional 1/f noise. The volume will be of interest to anyone wishing to understand the current development of work on complex systems, which is presently one of the most challenging subjects in statistical and condensed matter physics.
The concept of this book was developed during the Winter Seminar held in the Austrian mountains at the Alpengasthof Zeinisjoch, Tirol-Vorarlberg, from February 27 to March 3, 1988. Leading experts and advanced students in math ematics, physics, chemistry and computer science met to present and discuss their most recent results in an informal seminar. These were the circumstances that led to the idea of compiling some of the essential contributions presented at this seminar together with others describing basic features of "optimal struc tures in heterogeneous reaction systems". The aim of this book is to present the scientific results of the intensive work carried out in each of the specific fields of research. Each contribution therefore presents the current state of the art together with a deeper treatment enabling a more comprehensive understanding of that particular field of work. The common ideas which unite all the different contributions are already ex pressed in the title of this book. The nature of heterogeneous reaction systems is quite varied. An example is provided by the chemical systems such as noble metal particles which may act as heterogeneous catalysts for gaseous chemical compounds. Under these circumstances the metal particles and/or their sur faces may undergo phase transitions during reaction. Imbihl and Plath report on special catalytic systems of this kind, which are of industrial importance.
Once upon a time, science was not divided into disciplines as we know it today. There was no distinction between so-called social and natural sciences, not to mention the fragmentation of the latter into physics, chemistry, biology, geology, etc. According to legend, the scientists those days would do their research in whatever environment they happened to find comfortable, which more often than not was in bathtubs or giant hot tubs - remember Archimedes! Then, somehow, these days we find ourselves compartmentalized into different departments in our universities, or divisions in our research institutes. (We suspect, for one thing, that is to ensure that we will get our paychecks delivered on time at the end of each month. ) Anyway, as anyone who has worked in the real world knows: when one is confronted with a completely new problem or phenomenon, it is usually impossible to neatly assign the problem to physics, chemistry, or, for that matter, computer science. One needs to recall and fuse together the knowledge one learned before and, if that alone is insufficient, to consult experts in other areas. This points to the shortcomings of the compartmentalization of knowledge in our educational systems. In recent years, something has changed. Under the banner of Complex Systems, some brave souls are not afraid to tackle problems that are considered intractable by others, and dare to venture out of their trained disciplines or departments to which they are attached.
WAVE TURBULENCE is a state of a system of many simultaneously excited and interacting waves characterized by an energy distribution which is not in any sense close to thermodynamic equilibrium. Such situations in a choppy sea, in a hot plasma, in dielectrics under arise, for example, a powerful laser beam, in magnets placed in a strong microwave field, etc. Among the great variety of physical situations in which wave turbulence arises, it is possible to select two large limiting groups which allow a detailed analysis. The first is fully developed wave turbulence arising when energy pumping and dissipation have essentially different space scales. In this case there is a wide power spectrum of turbulence. This type of turbulence is described in detail e. g. in Zakharov et al. 1 In the second limiting case the scales in which energy pumping and dissipation occur are the same. As a rule, in this case a narrow, almost singular spectrum of turbulence appears which is concentrated near surfaces, curves or even points in k-space. One of the most important, widely investigated and instructive examples of this kind of turbulence is parametric wave turbulence appearing as a result of the evolution of a parametric instability of waves in media under strong external periodic modulation (laser beam, microwave electromagnetic field, etc. ). The present book deals with parametric wave turbulence.
This book describes significant tractable models used in solid mechanics - classical models used in modern mechanics as well as new ones. The models are selected to illustrate the main ideas which allow scientists to describe complicated effects in a simple manner and to clarify basic notations of solid mechanics. A model is considered to be tractable if it is based on clear physical assumptions which allow the selection of significant effects and relatively simple mathematical formulations. The first part of the book briefly reviews classical tractable models for a simple description of complex effects developed from the 18th to the 20th century and widely used in modern mechanics. The second part describes systematically the new tractable models used today for the treatment of increasingly complex mechanical objects - from systems with two degrees of freedom to three-dimensional continuous objects.
Quantum trajectory theory is largely employed in theoretical quantum optics and quantum open system theory and is closely related to the conceptual formalism of quantum mechanics (quantum measurement theory). However, even research articles show that not all the features of the theory are well known or completely exploited. We wrote this monograph mainly for researchers in theoretical quantum optics and related ?elds with the aim of giving a self-contained and solid p- sentation of a part of quantum trajectory theory (the diffusive case) together with some signi?cant applications (mainly with purposes of illustration of the theory, but which in part have been recently developed). Another aim of the monograph is to introduce to this subject post-graduate or PhD students. To help them, in the most mathematical and conceptual chapters, summaries are given to ?x ideas. Moreover, as stochastic calculus is usually not in the background of the studies in physics, we added Appendix A to introduce these concepts. The book is written also for ma- ematicians with interests in quantum theories. Quantum trajectory theory is a piece of modern theoretical physics which needs an interplay of various mathematical subjects, such as functional analysis and probability theory (stochastic calculus), and offers to mathematicians a beautiful ?eld for applications, giving suggestions for new mathematical developments.
New ideas on the mathematical foundations of quantum mechanics, related to the theory of quantum measurement, as well as the emergence of quantum optics, quantum electronics and optical communications have shown that the statistical structure of quantum mechanics deserves special investigation. In the meantime it has become a mature subject. In this book, the author, himself a leading researcher in this field, surveys the basic principles and results of the theory, concentrating on mathematically precise formulations. Special attention is given to the measurement dynamics. The presentation is pragmatic, concentrating on the ideas and their motivation. For detailed proofs, the readers, researchers and graduate students, are referred to the extensively documented literature.
A material continuum moving axially at high speed can be met in numerous different technical applications. These comprise band saws, web papers during manufacturing, processing and printing processes, textile bands during manufacturing and processing, pipes transporting fluids, transmission belts as well as flat objects moving at high speeds in space. In all these so varied technical applications, the maximum transport speed or the transportation speed is aimed at in order to increase efficiency and optimize investment and performance costs of sometimes very expensive and complex machines and installations. The dynamic behavior of axially moving systems very often hinders from reaching these aims. The book is devoted to dynamics of axially moving material objects of low flexural stiffness that are referred to as webs. Webs are moving at high speed, for example, in paper production the paper webs are transported with longitudinal speeds of up to 3000 m/min. Above the critical speed one can expect various dynamical instabilities mainly of divergent and flutter type. The up-to-date state of investigations conducted in the field of the axially moving system dynamics is presented in the beginning of the book. Special attention is paid on nonlinear dynamic investigations of translating systems. In the next chapters various mathematical models that can be employed in dynamic investigations of such objects and the results of analysis of the dynamic behavior of the axially moving orthotropic material web are presented. To make tracing the dynamic considerations easier, a paper web is the main object of investigations in the book.
About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years."
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears. |
You may like...
Cemeteries of San Diego
Seth Mallios, David M. Caterino, …
Hardcover
|