![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Surface-coating technology
Paint and Coatings: Applications and Corrosion Resistance helps designers, engineers, and maintenance personnel choose the appropriate coatings to best protect equipment, structures, and various components from corrosion, degradation, and failure. The book addresses all factors - including physical and mechanical properties, workability, corrosion resistance, and cost - that need to be considered in selecting the material of construction for application-specific components. The first chapters provide a background of the principles of coatings, the theory of adhesion, and the importance of surface preparation. The remaining chapters address paint systems and the different types of coatings, including organic coatings for immersion applications, metallic coatings, conversion coatings, cementitious coatings, monolithic surfacing for concrete, tribological synergistic coatings, and high temperature coatings. Each category includes the method or methods of applications, areas of application, and corrosion resistance properties. The book also includes tables that compare various coating materials in the presence of selected corrodents. Paint and Coatings: Applications and Corrosion Resistance is an essential guide for those involved in the design, material selection, and maintenance of structures, equipment, plant facilities, and miscellaneous components.
This book is for engineers and students of aerospace, materials and mechanical engineering. It covers the transition from aluminum to composite materials for aerospace structures and includes advanced analyses used in industries. New in the 2nd Edition is material on morphing structures, large deflection plates, nondestructive methods, vibration correlation technique for shear loaded plates, vibrations to measure physical properties, and more.
Interfacial Electtrokinetics and Electrophoresis presents theoretical models and experimental procedures for the analysis of electrokinetic phenomena. It discusses the physics and chemistry of solid/liquid, liquid/liquid, and gas/liquid interfaces, and offers applications for the printing, environmental, pharmaceutical and biomedical industries.
This book covers a variety of specific coatings and solid sheet and liquid applied linings, focusing on surface preparation, installation, and application and detailing physical, mechanical, and overall corrosion resistance. Compares and contrasts advantages and disadvantages of individual linings and coatings Examining the exposure of vessels and structures to temperature extremes and concentrates, Corrosion-Resistant Linings and Coatings describes synthetic, glass, and cement linings analyzes organic, metallic, and monolithic coatings and paints for concrete assesses polyester, acrylic, and urethane coatings that offer atmospheric protection evaluates polyester, perfluoroelastomers, and fluoroelastomers explains phenolics, epoxies, furans, and vinyl esters discusses coalescence, sagging and slumping, leveling, and adhesion highlights phosphate, chromate, oxide, and anodized coatings considers silicates, calcium aluminate, and Portland cement and more Corrosion-Resistant Linings and Coatings is an outstanding single-source reference for materials, chemical, mechanical, corrosion, industrial, civil, project, plant, and maintenance engineers; surface chemists; and upper-level undergraduate and graduate students in these disciplines.
An introduction to microbial spoilage. A review of chemical preservatives. The control of microbes through plant hygiene. Introduction to surfactants. Biodegradation of surfactants. Preservation of agrochemicals. Preservation of personal care products. Preservation of paint. Preservation of polymer emulsions. Preservation of adhesives. Preservation of inorganic systems. Preservation of metal working fluids. Toxicology of preservation. Safe handling of preservatives. North American preservative legislation. European preservative legislation. References. Index.
Advancing cost-effective methods using newly developed surfactants, De Based on papers presented at the World Detergent Conferences in Montre Balancing practical and theoretical concerns while promoting better pe Utilizing the editorFs more than 20 yearsF experience in the field and containing over 600 essential literature references, drawings, photog raphs, and tables, Detergency of Specialty Surfactants makes an ideal reference for physical, surface, colloid, oil, and cosmetic chemists; chemical engineers; materials scientists; and upper-level undergraduat e and graduate students in these disciplines.
An exploration of the surface characteristics of fibres and textiles. It emphasizes how fibre surface affects permeability, stiffness, strength, dyeing, wrinkling, and other performance characteristics to optimize production. It also illustrates methods for developing wrinkle-resistant finishes on fibre surfaces using environmentally friendly techniques.
This volume provides a comprehensive overview for recognizing and producing the characteristics of successful special surfactant agents. It highlights one of the most versatile and effective surface-active surfactant agents, detailing the synthesis and production, chemical properties and behaviours, and application for alkyl polyglucosides.
This volume presents the acomplishments of over 85 internationlly renowned scientists whose work was influenced by Professor Wasan's groundbreaking research on interfacial phenomena at The Illinois Institute of Technology, Chicago.
"Presents the latest knowledge on a wide range of topics in polymer science, including the dynamics, preparation, application, and physiochemical properties of polymer solutions and colloids; the adsorption characteristics at polymer surfaces; and the adhesion properties (including acid-base) of polymer surfaces."
This book discusses advances in functional thin films for sensors and novel concepts for future breakthroughs. The focus is on guidelines and design rules for sensor systems, interaction between functional thin films and other sensor subsystems, fundamentals behind the intrinsic functionality in sensing thin films and nanostructures, state-of-the-art technologies used to develop sensors today and concrete examples of sensor designs.
This book presents the status quo of the structure, preparation, properties and applications of tetrahedrally bonded amorphous carbon (ta-C) films and compares them with related film systems. Tetrahedrally bonded amorphous carbon films (ta-C) combine some of the outstanding properties of diamond with the versatility of amorphous materials. The book compares experimental results with the predictions of theoretical analyses, condensing them to practicable rules. It is strictly application oriented, emphasizing the exceptional potential of ta-C for tribological coatings of tools and components.
This volume will be summarized on the basis of the topics of Ionic Liquids in the form of chapters and sections. It would be emphasized on the synthesis of ILs of different types, and stabilization of amphiphilic self-assemblies in conventional and newly developed ILs to reveal formulation, physicochemical properties, microstructures, internal dynamics, thermodynamics as well as new possible applications. It covers: * Topics of ionic liquid assisted micelles and microemulsions in relation to their fundamental characteristics and theories * Development bio-ionic liquids or greener, environment-friendly solvents, and manifold interesting and promising applications of ionic liquid based micelles and micremulsions
In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.
This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging "classical" and "nano" concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played a crucial role in setting up the theoretical fundamentals of nucleation and crystal growth phenomena in the last century.
This book guides readers through the systematic analysis of Arc Spraying: one of the most widespread and important thermal spraying methods. Along the way, readers from industry and research laboratories become familiar with the features of the process and physical-chemical regulations of particles in flight, coating formation, internal coating properties, and their output parameters. The book is ideal for engineers, technicians, and scientists engaged in welding and thermal spraying and stands as an excellent reference for students interested in advanced coatings technology.
This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.
Spray atomization and deposition is a fast growing materials processing technique. Its development has encompassed process design, process modeling, new materials and automatic control. The process of spray deposition involves the fundamental phenomena of atomization, fluid flow, heat flow, mass transport, solidification and microstructural development. With this, the first comprehensive overview of the technique, the reader will gain a detailed insight into past and recent developments in spray deposition technology; a clear understanding of fundamental phenomena such as atomization, deposition and microstructural development and a comprehensive overview of the unique microstructure and properties of spray deposited materials. This book is aimed at post graduate students of materials science and engineering, and researchers and professionals working with these techniques both in academia and in industry.
This book presents co-sputtered processes ways to produce chrome doped TiO2 thin films onto various substrates such as quartz, silicon and porous silicon. Emphasis is given on the link between the experimental preparation and physical characterization in terms of Cr content. Moreover, the structural, optical and optoelectronic investigations are emphasized throughout. The book explores the potencial applications of devices based on Cr doped TiO2 thin films as gas sensors and in photocatalysis and in the photovoltaic industry. Also, this book provides extensive leads into research literature, and each chapter contains details which aim to develop awareness of the subject and the methods used. The content presented here will be useful for graduate students as well as researchers in materials science, physics, chemistry and engineering.
This volume presents chemical vapour deposition of diamond films for application in cutting tools, microdrills, dental burs and surgical tools. It examines various deposition techniques, discusses mechanisms of diamond growth and their impact on cutting tool life and performance.
This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging "classical" and "nano" concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played a crucial role in setting up the theoretical fundamentals of nucleation and crystal growth phenomena in the last century.
In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.
High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.
Synthesis and application of nanoparticles have been often reported by researchers in material science, chemistry and physics. While nanoparticles themselves are well known to exhibit fascinating characteristics. interest in their improvement and promotion is now turning to the hybridization of organic and/or inorganic nano-materials. Although nano-level hybridization is an outstandingly novel and original technique, it encounters many difficulties to achieving the desired industrial application. To thoroughly review the research in this field, this book focuses on the synthesis, characterization and process of nano-hybrid materials, including nanoparticles and ultra-thin films. It elucidates the fundamental aspects of nano-hybrid materials in the synthesis procedure, characterization, and processes with selected examples, from both the basic science and the engineering appications points of view. In fact, this is the first comprehensive compilation of new advances that covers the current status and topics of new synthetic information of nano-hybrid materials composed of organic and/or inorganic materials at the nano-meter level, in one volume. As such, the book provides a unique source of information and guidance for specialists and non-specialists alike.
This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states. |
You may like...
Technology for Success - Computer…
Mark Ciampa, Jill West, …
Paperback
(1)
Exam Ref 70-767 Implementing a SQL Data…
Jose Chinchilla, Raj Uchhana
Paperback
|