![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Surface-coating technology
This volume mainly discusses the application and commercialization of nanocoating. There are seventeen chapters in this volume, each including examples of interesting materials supported by appropriate figures for better clarification.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Early Vacuum Science and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Early Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Early Plasma Physics and Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Some Scientific and Engineering Societies and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Patents and the U. S. Patent Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Deposition Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sputter Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Arc Vapor Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chemical Vapor Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ion Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Surface Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Endnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Acronyms Used in Vacuum Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Glossary of Terms for Vacuum Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 The Foundations of Vacuum Coating Technology Introduction Vacuum coatings processes use a vacuum (sub are combined in the same chamber at the same time to deposit the material in a "hybrid process. " For atmospheric pressure) environment and an atomic example, the deposition of titanium carbonitride or molecular condensable vapor source to deposit thin films and coatings. The vacuum environment is (TiCxNy or Ti(CN)) may be performed using a hy used not only to reduce gas particle density but also brid process where the titanium may come from sput to limit gaseous contamination, establish partial pres tering titanium; the nitrogen is from a gas and the sures of inert and reactive gases, and control gas flow. carbon is from acetylene vapor. Alloys, mixtures, The vapor source may be from a solid or liquid sur compounds and composite materials can be depos face (physical vapor deposition-PVD), or from a ited using a single source of the desired material or chemical vapor precursor (chemical vapor deposi multiple sources of the constituents.
The broad field of thin film technology is based first of all on the film growth processes in general. The concepts of crystal structure and defects in crystalline thin films such as grain boundaries, dislocations and vacancies are examined. The general nature of film growth from atoms equilibrating with the service, through the initial stages of growth to film coalescence and zone models is also within the scope of this book as are evaporation, sputter deposition and chemical vapour deposition. Thin films are widely used in microelectronics, chemistry and a wide array of related fields. This book offers new research in this exploding field.
Many modern surface coatings and adhesives are derived from fossil feedstocks. With fossil fuels becoming more polluting and expensive to extract as supplies dwindle, industry is turning increasingly to nature, mimicking natural solutions using renewable raw materials and employing new technologies. Highlighting sustainable technologies and applications of renewable raw materials within the framework of green and sustainable chemistry, circular economy and resource efficiency, this book provides a cradle-to-cradle perspective. From potential feedstocks to recycling/reuse opportunities and the de-manufacture of adhesives and solvents, green chemistry principles are applied to all aspects of surface coating, printing, adhesive and sealant manufacture. This book is ideal for students, researchers and industrialists working in green sustainable chemistry, industrial coatings, adhesives, inks and printing technologies.
Through natural evolvement in thousands of years, biosurfaces have become highly adaptable to display their biological functions perfectly. Interestingly, they have developed micro-/nanostructures with gradient features to achieve smart wetting controls, such as ultra-hydrophobic water repellency in lotus leaf, directional water collection in wetted spider silk, directional adhesion in superhydrophobic butterfly wing, and fog-collecting hydrophobic/hydrophilic pattern on beetle back. These surfaces provide endless inspiration for the design and fabrication of functional interface materials with unique wettability, generating promising applications such as micro-fluidic devices, functional textiles, corrosion resistance, liquid transportation, antifogging, and water-collecting devices. In recent years there has been an exciting confluence of research areas of physics, chemistry, biology, and materials science to develop functional micro- and nanosurfaces. A kernel consists of organic materials with high/low surface energy and regular/irregular order/disorder, which can be rough/smooth and endlessly arranged and combined with various styles of micro- and nanostructures. This book introduces recent research on wettability of biological and bio-inspired surfaces. It discusses the mechanism of smart wetting controls, such as water collection/repellency on biological micro-/nanostructure gradient interfaces. It suggests ways to mimic these biological features to realize bio-inspired functional surfaces with unique wettability. The book will help researchers innovate designs with novel materials for future scientific works.
Nanocomposite materials as a special class of nanostructured materials have recently attracted great interest due to their extraordinary mechanical properties as well as thermal stability and oxidation resistance. The unique structure and exceptional properties make nanocomposite materials a possible alternative to traditional polycrystalline materials, which have met their limits in many recent engineering applications. Especially nanocomposite coatings synthesized by plasma assisted deposition processes under highly non-equilibrium conditions provide a high potential for new applications as protective and functional coatings in automotive, aerospace, tooling, electronic or manufacturing industry. Novel Nanocomposite Coatings provides a comprehensive overview of the synthesis of Si-containing hard nanocomposite coatings based on transition metal nitrides by plasma-based thin film processing. Full versatility of these nanocomposites is demonstrated for low Si-containing coatings tailored with superior mechanical properties and novel high Si-containing nanocomposite coatings with extraordinary thermal stability and resistance against oxidation optimized for high-temperature applications. A special attention is paid to understanding growth mechanisms of these structures under specific deposition conditions, structure-property relations and stability of individual constituents to enhance their functionality for various applications.
This book reviews research activities around fabrication of these kinds of two dimensional nanostructured coatings with examples of enhanced mechanical properties, corrosion resistance, and physical characteristics. As one of the useful and simple methods for fabrication of nanocomposite coatings, electrochemical deposition (electroplating) techniques are a strong focus in this book. The relation among nanotechnology and these kinds of nanostructures that come from "size effect" and "distribution effect" is discussed through different chapters of this book. Nanocomposite coatings have numerous advantages.
There has been enormous growth in the use of medical implants. However, in the case of hip replacement, loosening of metallic prosthesis fixed with polymethylmethylacrylate bone cement has resulted in painstaking revision surgery, which is a major problem for the patient, surgeon, and biomedical technology itself. In fact, global recognition of this problem led to the development of cementless fixation through the novel introduction of a bioactive hydroxyapatite (HAp) coating on biomedical-grade metallic implants. Since then, a wide variety of coating methods have evolved to make the HAp coatings on metallic implants more reliable. Microplasma Sprayed Hydroxyapatite Coatings discusses plasma spraying and other related HAp coating techniques, focusing on the pros and cons of macroplasma sprayed (MAPS)- and microplasma sprayed (MIPS)-HAp coatings. The book begins by explaining what a biomaterial really is, what the frequently used term biocompatibility stands for, and why it is so important for biomaterials to be biocompatible. It then: Examines the structural, chemical, macromechanical, micro/nanomechanical, and tribological properties and residual stress of HAp coatings Evaluates the efficacies under simulated body fluid immersion for MAPS- and MIPS-HAp coatings developed on biomedical implant-grade SS316L substrates Offers a comprehensive survey of state-of-the-art in vivo studies of MIPS-HAp coatings, presenting the results of pioneering research related to bone defect fixation Shedding light on the future scope and possibilities of MIPS-HAp coatings, Microplasma Sprayed Hydroxyapatite Coatings provides a valuable reference for students, researchers, and practitioners of biomedical engineering and materials science.
This book describes preparation techniques of protein-based surfactant s (PBS) in the laboratory by a variety of chemical and enzymatic means, production by using different types of amino acids, and marketplace applications of PBS in medical and personal care products, detergents, cosmetics, antimicrobial agents, and foods.
An examination of the theoretical foundations of the kinetics and thermodynamics of solid-liquid interfaces, as well as state-of-the-art industrial applications, this book presents information on surface and colloidal chemical processes and evaluates vital analytical tools such as atomic force microscopy, surface force apparatus measurements, and photon correlation spectroscopy.
Contains 27 papers from the major sessions on coatings held during EUROCORR '96. Four main topic areas are covered: organic coatings, ceramic coatings, zinc coating and other metallic coatings. The various chapters describe recent experimental work and service experience as well as valuable reviews. |
![]() ![]() You may like...
Categorical Data Analysis for the…
Razia Azen, Cindy M Walker
Hardcover
R4,493
Discovery Miles 44 930
DK First Atlas - A First Reference Guide…
Anita Ganeri, Chris Oxlade
Hardcover
Stabilization and H Control of Switched…
Jun Fu, Ruicheng Ma
Hardcover
R2,873
Discovery Miles 28 730
Up and Running with AutoCAD 2022 - 2D…
Elliot J. Gindis, Robert C. Kaebisch
Paperback
R2,215
Discovery Miles 22 150
Bezier and B-Spline Techniques
Hartmut Prautzsch, Wolfgang Boehm, …
Hardcover
R3,301
Discovery Miles 33 010
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,324
Discovery Miles 63 240
|