![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Surface-coating technology
Amorphous and Nano Alloys Electroless Depositions: Technology, Theory, Structure and Property describes the whole development and the most important subjects (technology, theory, structure and property) up to date of electroless plating (EP). The author concentrates on the fundamental scientific and academic problems (principle, mechanism and theory) in EP today. Based on the history of EP, this valuable reference describes lots of new EP processes, including electroless Fe based alloy system deposits, formation and theoretical description of electroless alloys, microscopic theory of electroless plating deposits, microscopic structures and surface morphology of electroless deposits, and weldability property of electroless deposits.
Surface active agents (surfactants) occur widely in nature, being found in locations as different as the membranes of living cells and in crude oil. Compounds in this class are surface active because of their amphiphilic nature. A consequence of this is that they have a remarkable tendency to aggregate in a variety of forms whose exact structures depend on the state of solvency and on some simple, but at times subtle, geometric packing considerations.
Future Development of Thermal Spray Coatings discusses the latest developments and research trends in the thermal spray industry. The book presents a timely guide to new applications and techniques. After an introduction to thermal spray coatings by the editor, Part One covers new types and properties of thermal spray coatings. Chapters look at feedstock suspensions and solutions, the application of solution precursor spray techniques to obtain ceramic films and coatings, cold spray techniques and warm spray technology amongst others. Part Two of the book moves on to discuss new applications for thermal spray coatings such as the use of thermal spray coatings in environmental barrier coatings, thermal spray coatings in renewable energy applications and manufacturing engineering in thermal spray technologies by advanced robot systems and process kinematics.
Active Coatings for Smart Textiles presents the latest information on active materials and their application to textiles in the form of coatings and finishes for the purpose of improving performance and creating active functional effects. This important book provides detailed coverage of smart coating types, processes, and applications. After an introduction to the topic, Part One introduces various types of smart and active coatings, including memory polymer coatings, durable and self-cleaning coatings, and breathable coatings. Technologies and related processes for the application of coatings to textiles is the focus of Part Two, with chapters devoted to microencapsulation technology, plasma surface treatments, and nanotechnology-based treatments. The book ends with a section on applications of smart textiles with responsive coatings, which are increasingly finding commercial niches in sportswear, protective clothing, medical textiles, and architecture.
Corrosion Control Through Organic Coatings, Second Edition provides readers with useful knowledge of the practical aspects of corrosion protection with organic coatings and links this to ongoing research and development. Thoroughly updated and reorganized to reflect the latest advances, this new edition expands its coverage with new chapters on coating degradation, protective properties, coatings for submerged service, powder coatings, and chemical pretreatment. Maintaining its authoritative treatment of the subject, the book reviews such topics as corrosion-protective pigments, waterborne coatings, weathering, aging, and degradation of paint, and environmental impact of commonly used techniques including dry- and wet-abrasive blasting and hydrojetting. It also discusses theory and practice of accelerated testing of coatings to assist readers in developing more accurate tests and determine corrosion protection performance.
"Intelligent Coatings for Corrosion Control" covers the most
current and comprehensive information on the emerging field of
intelligent coatings. The book begins with a fundamental discussion
of corrosion and corrosion protection through coatings, setting the
stage for deeper discussion of the various types of smart coatings
currently in use and in development, outlining their methods of
synthesis and characterization, and their applications in a variety
of corrosion settings. Further chapters provide insight into the
ongoing research, current trends, and technical challenges in this
rapidly progressing field.
This book presents the status quo of the structure, preparation, properties and applications of tetrahedrally bonded amorphous carbon (ta-C) films and compares them with related film systems. Tetrahedrally bonded amorphous carbon films (ta-C) combine some of the outstanding properties of diamond with the versatility of amorphous materials. The book compares experimental results with the predictions of theoretical analyses, condensing them to practicable rules. It is strictly application oriented, emphasizing the exceptional potential of ta-C for tribological coatings of tools and components.
Vacuum Deposition onto Webs: Films and Foils, Third Edition, provides the latest information on vacuum deposition, the technology that applies an even coating to a flexible material that can be held on a roll, thereby offering a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging. Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology, including solar energy products that are moving from rigid panels onto cheaper and more versatile flexible substrates, flexible electronic circuit 'boards', and flexible displays. In this third edition, all chapters are thoroughly revised with a significant amount of new information added, including newly developed barrier measurement techniques, improved in-vacuum monitoring technologies, and the latest developments in Atomic Layer Deposition (ALD).
As an area of high topical interest , Biopolymers New materials for Sustainable Films and Coatings covers the development and utilization of polymers derived from bioresources, with a particular focus on film and coating applications. With growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Leading research groups worldwide in industry and academe are working on such technology with the objective of applying the latest advances in the field. Written by well-respected experts, this text systematically covers the extraction and production of selected biopolymers as well as their properties and application as films or coatings in a variety of uses. The areas addressed include food packaging, edible coatings, paper coatings and agricultural films. Intended for researchers and students, this book will also be of interest to industry, especially in terms of the practical applications.
This extensively updated and revised version builds on the success of the first edition featuring new discoveries in powder technology, spraying techniques, new coatings applications and testing techniques for coatings -- Many new spray techniques are considered that did not exist when the first edition was published! The book begins with coverage of materials used, pre-spray treatment, and the techniques used. It then leads into the physics and chemistry of spraying and discusses coatings build-up. Characterization methods and the properties of the applied coatings are presented, and the book concludes with a lengthy chapters on thermal spray applications covers such areas as the aeronautics and space, automobiles, ceramics, chemicals, civil engineering, decorative coatings, electronics, energy generation and transport, iron and steel, medicine, mining and the nuclear industries.
This book describes wetting fundamentals and reviews the standard protocol for contact angle measurements. The authors include a brief overview of applications of contact angle measurements in surface science and engineering. They also discuss recent advances and research trends in wetting fundamentals and include measurement techniques and data interpretation of contract angles.
As with the popular first edition, this updated version provides complete and detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. It covers a range of recent developments in the field, such as the health monitoring of composite structure through sensing and actuation mechanisms and functionally graded materials. It also includes a new chapter on the analysis of laminated shell structures and a reorganized presentation of chapters that make the book even more valuable. Well written and authoritative, this will be a welcomed addition to libraries and curriculum of the engineering community.
Focusing on Lifshitz-Van der Waals, Lewis acid-base, and electrical double layer interactions, Colloid and Surface Properties of Clays and Related Minerals discusses measuring the surface properties of flat or particulate solids with contact angles of drops of high-energy liquids deposited on solid surfaces or via the thin-layer wicking technique. Topics include: applications of clays and clay minerals, other mineral colloids, surface thermodynamic properties, theory and interactions between colloids, surface thermodynamic properties of minerals, and biological interactions with mineral particles.
"Presents the latest research on the flow and structure of complex particulate sustemsions, the adsorption behavior of polymers, and the consolidation behavior and mechanical properties of films. Highlights recent advances in polymer functionality, conformation, and chemistry for biological, biomedical, and industrial applications."
Sol-Gel processing methods, first used historically for decorative and constructional materials, were extensively developed in the last century for applications such as glasses, ceramics, catalysts, coatings, composites and fibres. Today they are reaching their full potential, enabling the preparation of new generations of advanced materials not easily accessible by other methods yet using mild, low-energy conditions. The topic is therefore increasingly included in advanced undergraduate, MSc and PhD programmes in the areas of chemistry, physics and materials science. This concise introductory text, written at the advanced undergraduate/first-year postgraduate level, is also suitable as an introduction to the development, mechanisms, chemistry, characterisation methods and applications of the technique. It provides readers with an extensive yet concise grounding in the theory of each area of the subject and details the real and potential applications and the future prospects of sol-gel chemistry.
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore's law. This observation stated that transistor density in integrated circuits doubles every 1. 5-2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore's law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
There has been enormous growth in the use of medical implants. However, in the case of hip replacement, loosening of metallic prosthesis fixed with polymethylmethylacrylate bone cement has resulted in painstaking revision surgery, which is a major problem for the patient, surgeon, and biomedical technology itself. In fact, global recognition of this problem led to the development of cementless fixation through the novel introduction of a bioactive hydroxyapatite (HAp) coating on biomedical-grade metallic implants. Since then, a wide variety of coating methods have evolved to make the HAp coatings on metallic implants more reliable. Microplasma Sprayed Hydroxyapatite Coatings discusses plasma spraying and other related HAp coating techniques, focusing on the pros and cons of macroplasma sprayed (MAPS)- and microplasma sprayed (MIPS)-HAp coatings. The book begins by explaining what a biomaterial really is, what the frequently used term biocompatibility stands for, and why it is so important for biomaterials to be biocompatible. It then: Examines the structural, chemical, macromechanical, micro/nanomechanical, and tribological properties and residual stress of HAp coatings Evaluates the efficacies under simulated body fluid immersion for MAPS- and MIPS-HAp coatings developed on biomedical implant-grade SS316L substrates Offers a comprehensive survey of state-of-the-art in vivo studies of MIPS-HAp coatings, presenting the results of pioneering research related to bone defect fixation Shedding light on the future scope and possibilities of MIPS-HAp coatings, Microplasma Sprayed Hydroxyapatite Coatings provides a valuable reference for students, researchers, and practitioners of biomedical engineering and materials science.
Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.
Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characterization and applications of hydroxyapatite to provide timely information for active researchers and newcomers alike. In eight carefully reviewed chapters, hydroxyapatite experts from the United States, Japan, Singapore, and China present the latest on topics ranging from deposition processes to biomedical applications in implants and drug delivery. This book discusses: Magnetron sputtering and electrochemical deposition The modification of hydroxyapatite properties by sol-gel deposition to incorporate other elements found in natural bones, such as zinc, magnesium, and fluorine The use of pure hydroxyapatite in drug delivery applications The growth or self-assembly of hydroxyapatite on shape memory alloy Hydroxyapatite composite coatings-with carbon nanotubes, titanium dioxide (TiO2), and others-on the titanium alloy Offering valuable insights and a wealth of data, including numerous tables and figures, this is a rich source of information for research on hydroxyapatite coatings. Each chapter also covers material that provides an accessible stepping stone for those who are new to the field.
Corrosion-under-insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. In the first edition of this book published in 2008, the EFC Working Parties WP13 and WP15 engaged together to provide guidelines on managing CUI with contributions from a number of European refining, petrochemical and offshore companies. The guidelines are intended for use on all plants and installation that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques and recommended best practice for mitigating CUI, including design of plant and equipment, coatings and the use of thermal spray techniques, types of insulation, cladding/jacketing materials and protection guards. The guidelines also include case studies. The original document first published in 2008 was very successful and provided an important resource in the continuing battle to mitigate CUI. Many members of the EFC corrosion community requested an update and this has taken between 18-24 months to do so. Hopefully this revised document will continue to serve the community providing a practical source of information on how to monitor and manage insulated systems.
This book is for engineers and students of aerospace, materials and mechanical engineering. It covers the transition from aluminum to composite materials for aerospace structures and includes advanced analyses used in industries. New in the 2nd Edition is material on morphing structures, large deflection plates, nondestructive methods, vibration correlation technique for shear loaded plates, vibrations to measure physical properties, and more.
Paint and Coatings: Applications and Corrosion Resistance helps designers, engineers, and maintenance personnel choose the appropriate coatings to best protect equipment, structures, and various components from corrosion, degradation, and failure. The book addresses all factors - including physical and mechanical properties, workability, corrosion resistance, and cost - that need to be considered in selecting the material of construction for application-specific components. The first chapters provide a background of the principles of coatings, the theory of adhesion, and the importance of surface preparation. The remaining chapters address paint systems and the different types of coatings, including organic coatings for immersion applications, metallic coatings, conversion coatings, cementitious coatings, monolithic surfacing for concrete, tribological synergistic coatings, and high temperature coatings. Each category includes the method or methods of applications, areas of application, and corrosion resistance properties. The book also includes tables that compare various coating materials in the presence of selected corrodents. Paint and Coatings: Applications and Corrosion Resistance is an essential guide for those involved in the design, material selection, and maintenance of structures, equipment, plant facilities, and miscellaneous components.
Synthesis and application of nanoparticles have been often reported by researchers in material science, chemistry and physics. While nanoparticles themselves are well known to exhibit fascinating characteristics. interest in their improvement and promotion is now turning to the hybridization of organic and/or inorganic nano-materials. Although nano-level hybridization is an outstandingly novel and original technique, it encounters many difficulties to achieving the desired industrial application. To thoroughly review the research in this field, this book focuses on the synthesis, characterization and process of nano-hybrid materials, including nanoparticles and ultra-thin films. It elucidates the fundamental aspects of nano-hybrid materials in the synthesis procedure, characterization, and processes with selected examples, from both the basic science and the engineering appications points of view. In fact, this is the first comprehensive compilation of new advances that covers the current status and topics of new synthetic information of nano-hybrid materials composed of organic and/or inorganic materials at the nano-meter level, in one volume. As such, the book provides a unique source of information and guidance for specialists and non-specialists alike.
Interfacial Electtrokinetics and Electrophoresis presents theoretical models and experimental procedures for the analysis of electrokinetic phenomena. It discusses the physics and chemistry of solid/liquid, liquid/liquid, and gas/liquid interfaces, and offers applications for the printing, environmental, pharmaceutical and biomedical industries.
This book covers a variety of specific coatings and solid sheet and liquid applied linings, focusing on surface preparation, installation, and application and detailing physical, mechanical, and overall corrosion resistance. Compares and contrasts advantages and disadvantages of individual linings and coatings Examining the exposure of vessels and structures to temperature extremes and concentrates, Corrosion-Resistant Linings and Coatings describes synthetic, glass, and cement linings analyzes organic, metallic, and monolithic coatings and paints for concrete assesses polyester, acrylic, and urethane coatings that offer atmospheric protection evaluates polyester, perfluoroelastomers, and fluoroelastomers explains phenolics, epoxies, furans, and vinyl esters discusses coalescence, sagging and slumping, leveling, and adhesion highlights phosphate, chromate, oxide, and anodized coatings considers silicates, calcium aluminate, and Portland cement and more Corrosion-Resistant Linings and Coatings is an outstanding single-source reference for materials, chemical, mechanical, corrosion, industrial, civil, project, plant, and maintenance engineers; surface chemists; and upper-level undergraduate and graduate students in these disciplines. |
![]() ![]() You may like...
Recent Advances in Decision Making
Elisabeth Rakus-Andersson, Ronald R. Yager, …
Hardcover
R3,131
Discovery Miles 31 310
Cellular and Molecular Phytotoxicity of…
Mohammad Faisal, Quaiser Saquib, …
Hardcover
R4,659
Discovery Miles 46 590
Systematic Complex Problem Solving in…
Denis Cavallucci, Stelian Brad, …
Hardcover
R3,109
Discovery Miles 31 090
Advances in Artificial Intelligence…
Tuan D. Pham, Hong Yan, …
Hardcover
R5,389
Discovery Miles 53 890
In vitro Plant Breeding towards Novel…
Manoj Kumar, Annamalai Muthusamy, …
Hardcover
R4,602
Discovery Miles 46 020
|