![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Surface-coating technology
Spray atomization and deposition is a fast growing materials processing technique. Its development has encompassed process design, process modeling, new materials and automatic control. The process of spray deposition involves the fundamental phenomena of atomization, fluid flow, heat flow, mass transport, solidification and microstructural development. With this, the first comprehensive overview of the technique, the reader will gain a detailed insight into past and recent developments in spray deposition technology; a clear understanding of fundamental phenomena such as atomization, deposition and microstructural development and a comprehensive overview of the unique microstructure and properties of spray deposited materials. This book is aimed at post graduate students of materials science and engineering, and researchers and professionals working with these techniques both in academia and in industry.
Explores the synthesis and application techniques of novel smart coatings to varied research areas Presents concise, critical and state of the art review of existing research on various types of smart coatings Ascertains the different mechanisms associated with the stimuli response of smart coatings Includes an exclusive chapter on real time applications in the biomedical field Covers self-healing, self-cleaning, pH balance, early corrosion detection and triggering mechanisms
Diamond-like carbons (DLCs) display a number of attractive properties that make them versatile coating materials for a variety of applications, including extremely high hardness values, very low friction properties, very low gas permeability, good biocompatibility, and very high electrical resistivity, among others. Further research into this material is required to produce hydrogen-free DLC films and to synthesize it together with other materials, thereby obtaining better film properties. Diamond-Like Carbon Coatings: Technologies and Applications examines emerging manufacturing technologies for DLCs with the aim of improving their properties for use in practical applications. Discusses DLC coatings used in mechanical, manufacturing, and medical applications Details recent developments in the novel synthesis of DLC films Covers advances in understanding of chemical, structural, physical, mechanical, and tribological properties for modern material processing Highlights methods to yield longer service life Considers prospects for future applications of emerging DLC technologies This work is aimed at materials science and engineering researchers, advanced students, and industry professionals.
This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers and graduate students in vehicle engineering, mechanical engineering, especially in the field of advanced manufacturing technology. The book also provides a useful reference for other new technology related temperature and phase transformation, such as aluminum-magnesium alloy hot stamping.
The awareness and development of 'biodegradable' surfactants pre-dates current pressures by the environmental movement by nearly three decades, wherein a responsible industry mutually agreed to replace 'hard', non-biodegradable com ponents of household detergents by 'soft', biodegradable alternatives, without course to legislation. The only requirement at that time was for surfactants used in detergents to exhibit a 'primary biodegradability' in excess of 80%; this referring to the disap pearance or removal from solution of the intact surface active material as de tected by specified analytical techniques. This proved useful, as observed environmental impacts of surfactants, e.g. visible foam on rivers, are associated with the intact molecule. Test methods for 'primary biodegradability' were eventually enshrined in EU legislation for nonionic surfactants (Directive 821242/EEC, amended 73/404IEEC) and for anionic surfactants (Directive 8212431EEC, amended 73/405IEEC). No approved test methods and resultant legislation have been developed for cationic and amphoteric surfactants to date. The environmental classification of chemical substances, which of course includes surfactants, and associated risk assessment utilises a second criterion 'ready biodegradability'. This may be assessed by a number of methods which monitor oxygen uptake (BOD), carbon dioxide production or removal of dis solved organic carbon (DOC). Some surfactants which comply with the above Detergents Directive are borderline when it comes to 'ready biodegradability'."
Amorphous and Nano Alloys Electroless Depositions: Technology, Theory, Structure and Property describes the whole development and the most important subjects (technology, theory, structure and property) up to date of electroless plating (EP). The author concentrates on the fundamental scientific and academic problems (principle, mechanism and theory) in EP today. Based on the history of EP, this valuable reference describes lots of new EP processes, including electroless Fe based alloy system deposits, formation and theoretical description of electroless alloys, microscopic theory of electroless plating deposits, microscopic structures and surface morphology of electroless deposits, and weldability property of electroless deposits.
Surface active agents (surfactants) occur widely in nature, being found in locations as different as the membranes of living cells and in crude oil. Compounds in this class are surface active because of their amphiphilic nature. A consequence of this is that they have a remarkable tendency to aggregate in a variety of forms whose exact structures depend on the state of solvency and on some simple, but at times subtle, geometric packing considerations.
Future Development of Thermal Spray Coatings discusses the latest developments and research trends in the thermal spray industry. The book presents a timely guide to new applications and techniques. After an introduction to thermal spray coatings by the editor, Part One covers new types and properties of thermal spray coatings. Chapters look at feedstock suspensions and solutions, the application of solution precursor spray techniques to obtain ceramic films and coatings, cold spray techniques and warm spray technology amongst others. Part Two of the book moves on to discuss new applications for thermal spray coatings such as the use of thermal spray coatings in environmental barrier coatings, thermal spray coatings in renewable energy applications and manufacturing engineering in thermal spray technologies by advanced robot systems and process kinematics.
Corrosion Control Through Organic Coatings, Second Edition provides readers with useful knowledge of the practical aspects of corrosion protection with organic coatings and links this to ongoing research and development. Thoroughly updated and reorganized to reflect the latest advances, this new edition expands its coverage with new chapters on coating degradation, protective properties, coatings for submerged service, powder coatings, and chemical pretreatment. Maintaining its authoritative treatment of the subject, the book reviews such topics as corrosion-protective pigments, waterborne coatings, weathering, aging, and degradation of paint, and environmental impact of commonly used techniques including dry- and wet-abrasive blasting and hydrojetting. It also discusses theory and practice of accelerated testing of coatings to assist readers in developing more accurate tests and determine corrosion protection performance.
Active Coatings for Smart Textiles presents the latest information on active materials and their application to textiles in the form of coatings and finishes for the purpose of improving performance and creating active functional effects. This important book provides detailed coverage of smart coating types, processes, and applications. After an introduction to the topic, Part One introduces various types of smart and active coatings, including memory polymer coatings, durable and self-cleaning coatings, and breathable coatings. Technologies and related processes for the application of coatings to textiles is the focus of Part Two, with chapters devoted to microencapsulation technology, plasma surface treatments, and nanotechnology-based treatments. The book ends with a section on applications of smart textiles with responsive coatings, which are increasingly finding commercial niches in sportswear, protective clothing, medical textiles, and architecture.
"Intelligent Coatings for Corrosion Control" covers the most
current and comprehensive information on the emerging field of
intelligent coatings. The book begins with a fundamental discussion
of corrosion and corrosion protection through coatings, setting the
stage for deeper discussion of the various types of smart coatings
currently in use and in development, outlining their methods of
synthesis and characterization, and their applications in a variety
of corrosion settings. Further chapters provide insight into the
ongoing research, current trends, and technical challenges in this
rapidly progressing field.
This book presents the status quo of the structure, preparation, properties and applications of tetrahedrally bonded amorphous carbon (ta-C) films and compares them with related film systems. Tetrahedrally bonded amorphous carbon films (ta-C) combine some of the outstanding properties of diamond with the versatility of amorphous materials. The book compares experimental results with the predictions of theoretical analyses, condensing them to practicable rules. It is strictly application oriented, emphasizing the exceptional potential of ta-C for tribological coatings of tools and components.
"Presents the latest research on the flow and structure of complex particulate sustemsions, the adsorption behavior of polymers, and the consolidation behavior and mechanical properties of films. Highlights recent advances in polymer functionality, conformation, and chemistry for biological, biomedical, and industrial applications."
Vacuum Deposition onto Webs: Films and Foils, Third Edition, provides the latest information on vacuum deposition, the technology that applies an even coating to a flexible material that can be held on a roll, thereby offering a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging. Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology, including solar energy products that are moving from rigid panels onto cheaper and more versatile flexible substrates, flexible electronic circuit 'boards', and flexible displays. In this third edition, all chapters are thoroughly revised with a significant amount of new information added, including newly developed barrier measurement techniques, improved in-vacuum monitoring technologies, and the latest developments in Atomic Layer Deposition (ALD).
This extensively updated and revised version builds on the success of the first edition featuring new discoveries in powder technology, spraying techniques, new coatings applications and testing techniques for coatings -- Many new spray techniques are considered that did not exist when the first edition was published! The book begins with coverage of materials used, pre-spray treatment, and the techniques used. It then leads into the physics and chemistry of spraying and discusses coatings build-up. Characterization methods and the properties of the applied coatings are presented, and the book concludes with a lengthy chapters on thermal spray applications covers such areas as the aeronautics and space, automobiles, ceramics, chemicals, civil engineering, decorative coatings, electronics, energy generation and transport, iron and steel, medicine, mining and the nuclear industries.
The Chemistry and Physics of Coatings provides an introduction to the science underpinning the paint (organic coatings) industry to graduate level chemists who may have no previous knowledge of polymer-based technologies. This book stresses important physical phenomena such as rheology, film formation, and mechanical properties, their exploitation in paint, and the economic and legislative background against which coatings technology is tested. Attention is given to the chemistry of the polymers, pigments, and solvents that compose typical coatings, and the complex 'science and art' of formulating them effectively. The book also aims to give insights into the commercial application of the chemistries described, and includes a glossary of industry and polymer-related terms. Revised and updated, this second edition has been expanded to include separate chapters on binders for high solids and solvent-free coatings, inorganic and hybrid coatings and coatings formulation. There is also a new section on coatings additives. The Chemistry and Physics of Coatings will be of particular interest to graduates of materials and polymer sciences and related areas. It will also appeal to undergraduates, lecturers and those in the paint industry. Extracts from reviews of 1st Edition "... readable and surprisingly comprehensive ... In short this is an excellent book, which I recommend without hesitation." Journal of Materials Chemistry "..an informative and thoroughly recommended volume." Polymer International
This book describes wetting fundamentals and reviews the standard protocol for contact angle measurements. The authors include a brief overview of applications of contact angle measurements in surface science and engineering. They also discuss recent advances and research trends in wetting fundamentals and include measurement techniques and data interpretation of contract angles.
As with the popular first edition, this updated version provides complete and detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. It covers a range of recent developments in the field, such as the health monitoring of composite structure through sensing and actuation mechanisms and functionally graded materials. It also includes a new chapter on the analysis of laminated shell structures and a reorganized presentation of chapters that make the book even more valuable. Well written and authoritative, this will be a welcomed addition to libraries and curriculum of the engineering community.
Additives in Water-borne Coatings covers both current technology and the future prognosis for the key additives used in water-borne coatings today. It brings together international expertise to provide a comprehensive, practical overview of the field, its direction, and selection of key additives currently employed for in-depth treatment of their use, behaviour and scope by expert practitioners in those additives. This timely publication includes two excellent plenary chapters reviewing the developments together with the regulatory and legislative scene in the overall field. It also contains seven in-depth chapters devoted to key additive types, specifically; rheology modifiers, matting agents, surface active agents, dispersants, defoamers, and biocides. In addition, the book provides: * a systematic approach to additive selection - additive rules - for the development of a coating * a good understanding of the biocidal degradation effects and the key biocide strengths and weaknesses in addressing them * the reader with a thorough understanding of silica-based matting agents and their mode of action * useful overviews of water borne dispersants, silicone surface active agents and cellulosic and associative thickener rheology modifiers This key book amalgamates some of the latest developments in this field and provides an authoritative source of information for the research community and those in the industry, as well as providing invaluable information to graduate and postgraduate students.
Focusing on Lifshitz-Van der Waals, Lewis acid-base, and electrical double layer interactions, Colloid and Surface Properties of Clays and Related Minerals discusses measuring the surface properties of flat or particulate solids with contact angles of drops of high-energy liquids deposited on solid surfaces or via the thin-layer wicking technique. Topics include: applications of clays and clay minerals, other mineral colloids, surface thermodynamic properties, theory and interactions between colloids, surface thermodynamic properties of minerals, and biological interactions with mineral particles.
Sol-Gel processing methods, first used historically for decorative and constructional materials, were extensively developed in the last century for applications such as glasses, ceramics, catalysts, coatings, composites and fibres. Today they are reaching their full potential, enabling the preparation of new generations of advanced materials not easily accessible by other methods yet using mild, low-energy conditions. The topic is therefore increasingly included in advanced undergraduate, MSc and PhD programmes in the areas of chemistry, physics and materials science. This concise introductory text, written at the advanced undergraduate/first-year postgraduate level, is also suitable as an introduction to the development, mechanisms, chemistry, characterisation methods and applications of the technique. It provides readers with an extensive yet concise grounding in the theory of each area of the subject and details the real and potential applications and the future prospects of sol-gel chemistry.
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore's law. This observation stated that transistor density in integrated circuits doubles every 1. 5-2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore's law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.
Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characterization and applications of hydroxyapatite to provide timely information for active researchers and newcomers alike. In eight carefully reviewed chapters, hydroxyapatite experts from the United States, Japan, Singapore, and China present the latest on topics ranging from deposition processes to biomedical applications in implants and drug delivery. This book discusses: Magnetron sputtering and electrochemical deposition The modification of hydroxyapatite properties by sol-gel deposition to incorporate other elements found in natural bones, such as zinc, magnesium, and fluorine The use of pure hydroxyapatite in drug delivery applications The growth or self-assembly of hydroxyapatite on shape memory alloy Hydroxyapatite composite coatings-with carbon nanotubes, titanium dioxide (TiO2), and others-on the titanium alloy Offering valuable insights and a wealth of data, including numerous tables and figures, this is a rich source of information for research on hydroxyapatite coatings. Each chapter also covers material that provides an accessible stepping stone for those who are new to the field.
This book is for engineers and students of aerospace, materials and mechanical engineering. It covers the transition from aluminum to composite materials for aerospace structures and includes advanced analyses used in industries. New in the 2nd Edition is material on morphing structures, large deflection plates, nondestructive methods, vibration correlation technique for shear loaded plates, vibrations to measure physical properties, and more. |
![]() ![]() You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
|